August 20 2021
I demonstrate that attempts to detect DIF using a logistic regression approach and estimated factor scores face strong bias when the two groups have latent traits measured with
I also show that attempting to get around the problem using Bayes estimates for factor scores seems to eliminate the excess type-I error problem.
It remains to be seen if the Bayes factor score estimate approach has any degree of statistical power.
. local nobs=10001 // total number of examinees . clear . set seed 3481 . simirt , nitems(30) /// > pvalue( /// > .050 .050 .050 .050 .050 /// > .075 .075 .075 .075 .075 /// > .100 .100 .100 .100 .100 /// > .2 .2 .2 .2 .2 /// > .4 .4 .4 .4 .4 /// > .5 .5 .5 .5 .5 ) /// > nobs(`nobs') there are 30 items true 2PL parameters sample statistics input parameters ──────────────────────── 2PL ────────────────────────── slope slope loca- ─────────────────── item corr threshold Pvalue (D=1.7) (D=1.0) tion corr Pvalue slope(D=1.7) location ───────────────────────────────────────────────────────────────────────────────────────────────── 1 0.707 1.645 0.050 1.000 1.699 2.327 0.709 0.050 1.005 2.315 2 0.707 1.645 0.050 1.000 1.699 2.327 0.702 0.049 0.987 2.360 3 0.707 1.645 0.050 1.000 1.699 2.327 0.703 0.051 0.987 2.329 4 0.707 1.645 0.050 1.000 1.699 2.327 0.708 0.050 1.003 2.327 5 0.707 1.645 0.050 1.000 1.699 2.327 0.707 0.053 0.999 2.292 6 0.707 1.440 0.075 1.000 1.699 2.036 0.704 0.076 0.992 2.037 7 0.707 1.440 0.075 1.000 1.699 2.036 0.708 0.075 1.001 2.031 8 0.707 1.440 0.075 1.000 1.699 2.036 0.709 0.073 1.004 2.051 9 0.707 1.440 0.075 1.000 1.699 2.036 0.710 0.078 1.010 2.001 10 0.707 1.440 0.075 1.000 1.699 2.036 0.705 0.081 0.995 1.986 11 0.707 1.282 0.100 1.000 1.699 1.813 0.705 0.102 0.995 1.799 12 0.707 1.282 0.100 1.000 1.699 1.813 0.718 0.103 1.030 1.758 13 0.707 1.282 0.100 1.000 1.699 1.813 0.704 0.104 0.992 1.790 14 0.707 1.282 0.100 1.000 1.699 1.813 0.702 0.099 0.987 1.830 15 0.707 1.282 0.100 1.000 1.699 1.813 0.703 0.100 0.988 1.822 16 0.707 0.842 0.200 1.000 1.699 1.190 0.716 0.201 1.025 1.169 17 0.707 0.842 0.200 1.000 1.699 1.190 0.708 0.194 1.004 1.218 18 0.707 0.842 0.200 1.000 1.699 1.190 0.710 0.195 1.009 1.209 19 0.707 0.842 0.200 1.000 1.699 1.190 0.705 0.202 0.993 1.184 20 0.707 0.842 0.200 1.000 1.699 1.190 0.713 0.204 1.016 1.163 21 0.707 0.253 0.400 1.000 1.699 0.358 0.709 0.392 1.005 0.386 22 0.707 0.253 0.400 1.000 1.699 0.358 0.702 0.393 0.987 0.388 23 0.707 0.253 0.400 1.000 1.699 0.358 0.713 0.395 1.017 0.374 24 0.707 0.253 0.400 1.000 1.699 0.358 0.699 0.410 0.978 0.327 25 0.707 0.253 0.400 1.000 1.699 0.358 0.708 0.394 1.003 0.379 26 0.707 0.000 0.500 1.000 1.699 0.000 0.709 0.501 1.006 -0.003 27 0.707 0.000 0.500 1.000 1.699 0.000 0.703 0.496 0.989 0.013 28 0.707 0.000 0.500 1.000 1.699 0.000 0.705 0.502 0.995 -0.007 29 0.707 0.000 0.500 1.000 1.699 0.000 0.705 0.504 0.994 -0.013 30 0.707 0.000 0.500 1.000 1.699 0.000 0.714 0.498 1.021 0.009 ───────────────────────────────────────────────────────────────────────────────────────────────── All items scored 0/1. The Pvalue is the proportion item=1. Corr is the correlation of the latent trait and the latent response variable underlying the item (i.e., the standardized factor loading). 2PL refers to two parameter logistic item response theory models, which can be parameterized with a scaling constant D that often assumed to be 1.0 or 1.7. . keep u* q . gen focal=_n>`c(N)'/2 . gen id=_n . scoreit u* , gen(sumscore) Applying the .4 rule: more than 40% of items must be non-missing to have a total score. NB: 0 observations set to missing on sumscore due to missing on all items Test scale = mean(unstandardized items) Average interitem covariance: .0339592 Number of items in the scale: 30 Scale reliability coefficient: 0.9032 Item Means +/- 1 SD from mean on scale Item High Low ──────────────────────────────────────── u1 0.24 0.00 u2 0.23 0.00 u3 0.23 0.00 u4 0.24 0.00 u5 0.24 0.00 u6 0.32 0.00 u7 0.35 0.00 u8 0.31 0.00 u9 0.36 0.00 u10 0.34 0.00 u11 0.42 0.00 u12 0.43 0.00 u13 0.43 0.00 u14 0.39 0.00 u15 0.39 0.00 u16 0.64 0.00 u17 0.62 0.00 u18 0.63 0.00 u19 0.65 0.00 u20 0.64 0.00 u21 0.86 0.00 u22 0.86 0.00 u23 0.88 0.00 u24 0.88 0.00 u25 0.87 0.00 u26 0.93 0.00 u27 0.93 0.00 u28 0.93 0.00 u29 0.94 0.00 u30 0.94 0.00 . table focal, c(min sumscore max sumscore med sumscore) ──────────┬──────────────────────────────────────────── focal │ min(sumscore) max(sumscore) med(sumscore) ──────────┼──────────────────────────────────────────── 0 │ 0 30 5 1 │ 0 29 5 ──────────┴──────────────────────────────────────────── . table focal, c(min q max q med q) ──────────┬─────────────────────────────────── focal │ min(q) max(q) med(q) ──────────┼─────────────────────────────────── 0 │ -3.345039 3.336954 .0195344 1 │ -3.581353 3.495501 .0213594 ──────────┴─────────────────────────────────── . tempfile f1 . save `f1' , replace (note: file /var/folders/lq/w3m6z0dj41ngkbbc0204xb7m0000gp/T//S_03002.000004 not found) file /var/folders/lq/w3m6z0dj41ngkbbc0204xb7m0000gp/T//S_03002.000004 saved
Note that I use WLSMV/theta because I want to switch to Bayes later on.
. runmplus u1-u30 , /// > estimator(wlsmv) parameterization(theta) /// > cat(all) model(f by u1-u30*; f@1;) /// > output(svalues;) savelog(foo) Mplus VERSION 8.6 (Mac) MUTHEN & MUTHEN Running input file '__000001.inp'... Beginning Time: 13:11:27 Ending Time: 13:11:30 Elapsed Time: 00:00:03 Output saved in '__000001.out'. THE MODEL ESTIMATION TERMINATED NORMALLY Mplus VERSION 8.6 (Mac) MUTHEN & MUTHEN 08/20/2021 1:11 PM INPUT INSTRUCTIONS TITLE: Variable List - u1 : u2 : u3 : u4 : u5 : u6 : u7 : u8 : u9 : u10 : u11 : u12 : u13 : u14 : u15 : u16 : u17 : u18 : u19 : u20 : u21 : u22 : u23 : u24 : u25 : u26 : u27 : u28 : u29 : u30 : DATA: FILE = __000001.dat ; VARIABLE: NAMES = u1 u2 u3 u4 u5 u6 u7 u8 u9 u10 u11 u12 u13 u14 u15 u16 u17 u18 u19 u20 u21 u22 u23 u24 u25 u26 u27 u28 u29 u30 ; MISSING ARE ALL (-9999) ; CATEGORICAL = all ; ANALYSIS: ESTIMATOR = wlsmv ; PARAMETERIZATION = theta ; OUTPUT: svalues ; MODEL: f by u1-u30* ; f@1 ; INPUT READING TERMINATED NORMALLY Variable List - u1 : u2 : u3 : u4 : u5 : u6 : u7 : u8 : u9 : u10 : u11 : u12 : u13 : u14 : u15 : u16 : u17 : u18 : u19 : u20 : u21 : u22 : u23 : u24 : u25 : u26 : u27 : u28 : u29 : u30 : SUMMARY OF ANALYSIS Number of groups 1 Number of observations 10001 Number of dependent variables 30 Number of independent variables 0 Number of continuous latent variables 1 Observed dependent variables Binary and ordered categorical (ordinal) U1 U2 U3 U4 U5 U6 U7 U8 U9 U10 U11 U12 U13 U14 U15 U16 U17 U18 U19 U20 U21 U22 U23 U24 U25 U26 U27 U28 U29 U30 Continuous latent variables F Estimator WLSMV Maximum number of iterations 1000 Convergence criterion 0.500D-04 Maximum number of steepest descent iterations 20 Maximum number of iterations for H1 2000 Convergence criterion for H1 0.100D-03 Parameterization THETA Link PROBIT Input data file(s) __000001.dat Input data format FREE SUMMARY OF DATA Number of missing data patterns 1 COVARIANCE COVERAGE OF DATA Minimum covariance coverage value 0.100 PROPORTION OF DATA PRESENT Covariance Coverage U1 U2 U3 U4 U5 ________ ________ ________ ________ ________ U1 1.000 U2 1.000 1.000 U3 1.000 1.000 1.000 U4 1.000 1.000 1.000 1.000 U5 1.000 1.000 1.000 1.000 1.000 U6 1.000 1.000 1.000 1.000 1.000 U7 1.000 1.000 1.000 1.000 1.000 U8 1.000 1.000 1.000 1.000 1.000 U9 1.000 1.000 1.000 1.000 1.000 U10 1.000 1.000 1.000 1.000 1.000 U11 1.000 1.000 1.000 1.000 1.000 U12 1.000 1.000 1.000 1.000 1.000 U13 1.000 1.000 1.000 1.000 1.000 U14 1.000 1.000 1.000 1.000 1.000 U15 1.000 1.000 1.000 1.000 1.000 U16 1.000 1.000 1.000 1.000 1.000 U17 1.000 1.000 1.000 1.000 1.000 U18 1.000 1.000 1.000 1.000 1.000 U19 1.000 1.000 1.000 1.000 1.000 U20 1.000 1.000 1.000 1.000 1.000 U21 1.000 1.000 1.000 1.000 1.000 U22 1.000 1.000 1.000 1.000 1.000 U23 1.000 1.000 1.000 1.000 1.000 U24 1.000 1.000 1.000 1.000 1.000 U25 1.000 1.000 1.000 1.000 1.000 U26 1.000 1.000 1.000 1.000 1.000 U27 1.000 1.000 1.000 1.000 1.000 U28 1.000 1.000 1.000 1.000 1.000 U29 1.000 1.000 1.000 1.000 1.000 U30 1.000 1.000 1.000 1.000 1.000 Covariance Coverage U6 U7 U8 U9 U10 ________ ________ ________ ________ ________ U6 1.000 U7 1.000 1.000 U8 1.000 1.000 1.000 U9 1.000 1.000 1.000 1.000 U10 1.000 1.000 1.000 1.000 1.000 U11 1.000 1.000 1.000 1.000 1.000 U12 1.000 1.000 1.000 1.000 1.000 U13 1.000 1.000 1.000 1.000 1.000 U14 1.000 1.000 1.000 1.000 1.000 U15 1.000 1.000 1.000 1.000 1.000 U16 1.000 1.000 1.000 1.000 1.000 U17 1.000 1.000 1.000 1.000 1.000 U18 1.000 1.000 1.000 1.000 1.000 U19 1.000 1.000 1.000 1.000 1.000 U20 1.000 1.000 1.000 1.000 1.000 U21 1.000 1.000 1.000 1.000 1.000 U22 1.000 1.000 1.000 1.000 1.000 U23 1.000 1.000 1.000 1.000 1.000 U24 1.000 1.000 1.000 1.000 1.000 U25 1.000 1.000 1.000 1.000 1.000 U26 1.000 1.000 1.000 1.000 1.000 U27 1.000 1.000 1.000 1.000 1.000 U28 1.000 1.000 1.000 1.000 1.000 U29 1.000 1.000 1.000 1.000 1.000 U30 1.000 1.000 1.000 1.000 1.000 Covariance Coverage U11 U12 U13 U14 U15 ________ ________ ________ ________ ________ U11 1.000 U12 1.000 1.000 U13 1.000 1.000 1.000 U14 1.000 1.000 1.000 1.000 U15 1.000 1.000 1.000 1.000 1.000 U16 1.000 1.000 1.000 1.000 1.000 U17 1.000 1.000 1.000 1.000 1.000 U18 1.000 1.000 1.000 1.000 1.000 U19 1.000 1.000 1.000 1.000 1.000 U20 1.000 1.000 1.000 1.000 1.000 U21 1.000 1.000 1.000 1.000 1.000 U22 1.000 1.000 1.000 1.000 1.000 U23 1.000 1.000 1.000 1.000 1.000 U24 1.000 1.000 1.000 1.000 1.000 U25 1.000 1.000 1.000 1.000 1.000 U26 1.000 1.000 1.000 1.000 1.000 U27 1.000 1.000 1.000 1.000 1.000 U28 1.000 1.000 1.000 1.000 1.000 U29 1.000 1.000 1.000 1.000 1.000 U30 1.000 1.000 1.000 1.000 1.000 Covariance Coverage U16 U17 U18 U19 U20 ________ ________ ________ ________ ________ U16 1.000 U17 1.000 1.000 U18 1.000 1.000 1.000 U19 1.000 1.000 1.000 1.000 U20 1.000 1.000 1.000 1.000 1.000 U21 1.000 1.000 1.000 1.000 1.000 U22 1.000 1.000 1.000 1.000 1.000 U23 1.000 1.000 1.000 1.000 1.000 U24 1.000 1.000 1.000 1.000 1.000 U25 1.000 1.000 1.000 1.000 1.000 U26 1.000 1.000 1.000 1.000 1.000 U27 1.000 1.000 1.000 1.000 1.000 U28 1.000 1.000 1.000 1.000 1.000 U29 1.000 1.000 1.000 1.000 1.000 U30 1.000 1.000 1.000 1.000 1.000 Covariance Coverage U21 U22 U23 U24 U25 ________ ________ ________ ________ ________ U21 1.000 U22 1.000 1.000 U23 1.000 1.000 1.000 U24 1.000 1.000 1.000 1.000 U25 1.000 1.000 1.000 1.000 1.000 U26 1.000 1.000 1.000 1.000 1.000 U27 1.000 1.000 1.000 1.000 1.000 U28 1.000 1.000 1.000 1.000 1.000 U29 1.000 1.000 1.000 1.000 1.000 U30 1.000 1.000 1.000 1.000 1.000 Covariance Coverage U26 U27 U28 U29 U30 ________ ________ ________ ________ ________ U26 1.000 U27 1.000 1.000 U28 1.000 1.000 1.000 U29 1.000 1.000 1.000 1.000 U30 1.000 1.000 1.000 1.000 1.000 UNIVARIATE PROPORTIONS AND COUNTS FOR CATEGORICAL VARIABLES U1 Category 1 0.950 9497.000 Category 2 0.050 504.000 U2 Category 1 0.951 9514.000 Category 2 0.049 487.000 U3 Category 1 0.949 9492.000 Category 2 0.051 509.000 U4 Category 1 0.950 9504.000 Category 2 0.050 497.000 U5 Category 1 0.947 9475.000 Category 2 0.053 526.000 U6 Category 1 0.924 9244.000 Category 2 0.076 757.000 U7 Category 1 0.925 9247.000 Category 2 0.075 754.000 U8 Category 1 0.927 9270.000 Category 2 0.073 731.000 U9 Category 1 0.922 9225.000 Category 2 0.078 776.000 U10 Category 1 0.919 9195.000 Category 2 0.081 806.000 U11 Category 1 0.898 8978.000 Category 2 0.102 1023.000 U12 Category 1 0.897 8966.000 Category 2 0.103 1035.000 U13 Category 1 0.896 8964.000 Category 2 0.104 1037.000 U14 Category 1 0.901 9008.000 Category 2 0.099 993.000 U15 Category 1 0.900 8999.000 Category 2 0.100 1002.000 U16 Category 1 0.799 7987.000 Category 2 0.201 2014.000 U17 Category 1 0.806 8060.000 Category 2 0.194 1941.000 U18 Category 1 0.805 8049.000 Category 2 0.195 1952.000 U19 Category 1 0.798 7980.000 Category 2 0.202 2021.000 U20 Category 1 0.796 7965.000 Category 2 0.204 2036.000 U21 Category 1 0.608 6078.000 Category 2 0.392 3923.000 U22 Category 1 0.607 6075.000 Category 2 0.393 3926.000 U23 Category 1 0.605 6052.000 Category 2 0.395 3949.000 U24 Category 1 0.590 5905.000 Category 2 0.410 4096.000 U25 Category 1 0.606 6060.000 Category 2 0.394 3941.000 U26 Category 1 0.499 4992.000 Category 2 0.501 5009.000 U27 Category 1 0.504 5038.000 Category 2 0.496 4963.000 U28 Category 1 0.498 4981.000 Category 2 0.502 5020.000 U29 Category 1 0.496 4963.000 Category 2 0.504 5038.000 U30 Category 1 0.502 5025.000 Category 2 0.498 4976.000 THE MODEL ESTIMATION TERMINATED NORMALLY MODEL FIT INFORMATION Number of Free Parameters 60 Chi-Square Test of Model Fit Value 417.505* Degrees of Freedom 405 P-Value 0.3234 * The chi-square value for MLM, MLMV, MLR, ULSMV, WLSM and WLSMV cannot be used for chi-square difference testing in the regular way. MLM, MLR and WLSM chi-square difference testing is described on the Mplus website. MLMV, WLSMV, and ULSMV difference testing is done using the DIFFTEST option. RMSEA (Root Mean Square Error Of Approximation) Estimate 0.002 90 Percent C.I. 0.000 0.004 Probability RMSEA <= .05 1.000 CFI/TLI CFI 1.000 TLI 1.000 Chi-Square Test of Model Fit for the Baseline Model Value 155989.957 Degrees of Freedom 435 P-Value 0.0000 SRMR (Standardized Root Mean Square Residual) Value 0.016 Optimum Function Value for Weighted Least-Squares Estimator Value 0.14370107D-01 MODEL RESULTS Two-Tailed Estimate S.E. Est./S.E. P-Value F BY U1 1.014 0.042 24.271 0.000 U2 0.977 0.042 23.160 0.000 U3 0.965 0.041 23.529 0.000 U4 0.981 0.041 23.974 0.000 U5 0.909 0.036 25.021 0.000 U6 0.978 0.036 27.108 0.000 U7 1.076 0.040 26.980 0.000 U8 0.979 0.037 26.512 0.000 U9 1.063 0.039 27.584 0.000 U10 0.998 0.036 27.652 0.000 U11 1.017 0.034 30.032 0.000 U12 1.049 0.035 29.831 0.000 U13 1.025 0.034 30.042 0.000 U14 0.953 0.032 29.613 0.000 U15 0.955 0.032 29.478 0.000 U16 1.002 0.028 36.239 0.000 U17 0.982 0.027 36.147 0.000 U18 1.005 0.028 36.121 0.000 U19 1.031 0.028 36.332 0.000 U20 0.995 0.027 36.637 0.000 U21 0.983 0.024 40.952 0.000 U22 1.012 0.025 41.171 0.000 U23 1.037 0.025 41.654 0.000 U24 0.995 0.024 41.012 0.000 U25 0.990 0.024 41.094 0.000 U26 1.005 0.024 41.129 0.000 U27 1.006 0.024 41.463 0.000 U28 1.031 0.025 41.248 0.000 U29 1.014 0.024 41.746 0.000 U30 1.069 0.025 42.107 0.000 Thresholds U1$1 2.337 0.052 45.223 0.000 U2$1 2.317 0.052 44.597 0.000 U3$1 2.274 0.050 45.522 0.000 U4$1 2.308 0.050 45.849 0.000 U5$1 2.190 0.044 50.280 0.000 U6$1 2.006 0.041 49.416 0.000 U7$1 2.111 0.046 46.190 0.000 U8$1 2.033 0.042 48.574 0.000 U9$1 2.074 0.044 47.395 0.000 U10$1 1.979 0.040 49.288 0.000 U11$1 1.810 0.036 50.554 0.000 U12$1 1.829 0.037 49.201 0.000 U13$1 1.805 0.036 50.176 0.000 U14$1 1.776 0.034 52.200 0.000 U15$1 1.770 0.034 51.873 0.000 U16$1 1.184 0.025 48.104 0.000 U17$1 1.209 0.025 49.314 0.000 U18$1 1.218 0.025 48.697 0.000 U19$1 1.199 0.025 47.643 0.000 U20$1 1.170 0.024 48.191 0.000 U21$1 0.384 0.018 20.972 0.000 U22$1 0.388 0.019 20.883 0.000 U23$1 0.384 0.019 20.429 0.000 U24$1 0.323 0.018 17.722 0.000 U25$1 0.378 0.018 20.623 0.000 U26$1 -0.003 0.018 -0.170 0.865 U27$1 0.013 0.018 0.750 0.453 U28$1 -0.007 0.018 -0.390 0.697 U29$1 -0.013 0.018 -0.750 0.453 U30$1 0.009 0.018 0.490 0.624 Variances F 1.000 0.000 999.000 999.000 QUALITY OF NUMERICAL RESULTS Condition Number for the Information Matrix 0.690E-01 (ratio of smallest to largest eigenvalue) IRT PARAMETERIZATION Two-Tailed Estimate S.E. Est./S.E. P-Value Item Discriminations F BY U1 1.014 0.042 24.271 0.000 U2 0.977 0.042 23.160 0.000 U3 0.965 0.041 23.529 0.000 U4 0.981 0.041 23.974 0.000 U5 0.909 0.036 25.021 0.000 U6 0.978 0.036 27.108 0.000 U7 1.076 0.040 26.980 0.000 U8 0.979 0.037 26.512 0.000 U9 1.063 0.039 27.584 0.000 U10 0.998 0.036 27.652 0.000 U11 1.017 0.034 30.032 0.000 U12 1.049 0.035 29.831 0.000 U13 1.025 0.034 30.042 0.000 U14 0.953 0.032 29.613 0.000 U15 0.955 0.032 29.478 0.000 U16 1.002 0.028 36.239 0.000 U17 0.982 0.027 36.147 0.000 U18 1.005 0.028 36.121 0.000 U19 1.031 0.028 36.332 0.000 U20 0.995 0.027 36.637 0.000 U21 0.983 0.024 40.952 0.000 U22 1.012 0.025 41.171 0.000 U23 1.037 0.025 41.654 0.000 U24 0.995 0.024 41.012 0.000 U25 0.990 0.024 41.094 0.000 U26 1.005 0.024 41.129 0.000 U27 1.006 0.024 41.463 0.000 U28 1.031 0.025 41.248 0.000 U29 1.014 0.024 41.746 0.000 U30 1.069 0.025 42.107 0.000 Item Difficulties U1$1 2.304 0.060 38.156 0.000 U2$1 2.373 0.066 36.137 0.000 U3$1 2.356 0.065 36.299 0.000 U4$1 2.353 0.064 37.037 0.000 U5$1 2.409 0.066 36.279 0.000 U6$1 2.052 0.051 40.501 0.000 U7$1 1.961 0.046 42.902 0.000 U8$1 2.078 0.052 40.013 0.000 U9$1 1.952 0.045 43.053 0.000 U10$1 1.984 0.048 41.509 0.000 U11$1 1.779 0.041 43.888 0.000 U12$1 1.744 0.039 44.584 0.000 U13$1 1.761 0.040 44.120 0.000 U14$1 1.864 0.044 42.013 0.000 U15$1 1.854 0.044 41.972 0.000 U16$1 1.182 0.027 43.449 0.000 U17$1 1.232 0.028 43.470 0.000 U18$1 1.212 0.028 43.834 0.000 U19$1 1.162 0.026 43.885 0.000 U20$1 1.175 0.027 43.366 0.000 U21$1 0.390 0.019 20.659 0.000 U22$1 0.383 0.019 20.659 0.000 U23$1 0.370 0.018 20.312 0.000 U24$1 0.324 0.018 17.579 0.000 U25$1 0.382 0.019 20.369 0.000 U26$1 -0.003 0.018 -0.170 0.865 U27$1 0.013 0.018 0.750 0.453 U28$1 -0.007 0.017 -0.390 0.697 U29$1 -0.013 0.018 -0.750 0.453 U30$1 0.008 0.017 0.490 0.624 Variances F 1.000 0.000 0.000 1.000 MODEL COMMAND WITH FINAL ESTIMATES USED AS STARTING VALUES f BY u1*1.01409; f BY u2*0.97653; f BY u3*0.96534; f BY u4*0.98097; f BY u5*0.90888; f BY u6*0.97777; f BY u7*1.07641; f BY u8*0.97867; f BY u9*1.06260; f BY u10*0.99782; f BY u11*1.01746; f BY u12*1.04867; f BY u13*1.02499; f BY u14*0.95264; f BY u15*0.95452; f BY u16*1.00153; f BY u17*0.98187; f BY u18*1.00501; f BY u19*1.03146; f BY u20*0.99537; f BY u21*0.98347; f BY u22*1.01198; f BY u23*1.03699; f BY u24*0.99536; f BY u25*0.99005; f BY u26*1.00510; f BY u27*1.00563; f BY u28*1.03124; f BY u29*1.01361; f BY u30*1.06863; [ u1$1*2.33686 ]; [ u2$1*2.31682 ]; [ u3$1*2.27431 ]; [ u4$1*2.30823 ]; [ u5$1*2.18950 ]; [ u6$1*2.00644 ]; [ u7$1*2.11101 ]; [ u8$1*2.03322 ]; [ u9$1*2.07416 ]; [ u10$1*1.97926 ]; [ u11$1*1.80978 ]; [ u12$1*1.82851 ]; [ u13$1*1.80543 ]; [ u14$1*1.77559 ]; [ u15$1*1.77015 ]; [ u16$1*1.18424 ]; [ u17$1*1.20945 ]; [ u18$1*1.21787 ]; [ u19$1*1.19854 ]; [ u20$1*1.16959 ]; [ u21$1*0.38352 ]; [ u22$1*0.38790 ]; [ u23$1*0.38417 ]; [ u24$1*0.32265 ]; [ u25$1*0.37819 ]; [ u26$1*-0.00302 ]; [ u27$1*0.01333 ]; [ u28$1*-0.00702 ]; [ u29$1*-0.01338 ]; [ u30$1*0.00899 ]; f@1; Beginning Time: 13:11:27 Ending Time: 13:11:30 Elapsed Time: 00:00:03 MUTHEN & MUTHEN 3463 Stoner Ave. Los Angeles, CA 90066 Tel: (310) 391-9971 Fax: (310) 391-8971 Web: www.StatModel.com Support: Support@StatModel.com Copyright (c) 1998-2021 Muthen & Muthen . runmplus_read_svalues , out(foo.out) svalues.txt saved local macro passes consistency check matrix svalues in return results . mat svalues = r(Svalues)
The reference group has answers to all 30 items.
. use `f1' , clear . keep if focal~=1 (5,001 observations deleted) . forvalues i=1/30 { 2. local l`i' = svalues[`i',1] 3. local t=`i'+30 4. local t`i' = svalues[`t',1] 5. local model "`model' f by u`i'@`l`i'' ;" 6. local model "`model' [u`i'$1@`t`i''] ;" 7. } . runmplus u1-u30 , cat(all) idvariable(id) /// > estimator(wlsmv) parameterization(theta) /// > model(`model' f@1;) /// > savedata(save=fscores; file=ref.dat;) /// > savelog(foo) Mplus VERSION 8.6 (Mac) MUTHEN & MUTHEN Running input file '__000001.inp'... Beginning Time: 13:11:31 Ending Time: 13:11:33 Elapsed Time: 00:00:02 Output saved in '__000001.out'. THE MODEL ESTIMATION TERMINATED NORMALLY Mplus VERSION 8.6 (Mac) MUTHEN & MUTHEN 08/20/2021 1:11 PM INPUT INSTRUCTIONS TITLE: Variable List - u1 : u2 : u3 : u4 : u5 : u6 : u7 : u8 : u9 : u10 : u11 : u12 : u13 : u14 : u15 : u16 : u17 : u18 : u19 : u20 : u21 : u22 : u23 : u24 : u25 : u26 : u27 : u28 : u29 : u30 : id : DATA: FILE = __000001.dat ; VARIABLE: NAMES = u1 u2 u3 u4 u5 u6 u7 u8 u9 u10 u11 u12 u13 u14 u15 u16 u17 u18 u19 u20 u21 u22 u23 u24 u25 u26 u27 u28 u29 u30 id ; MISSING ARE ALL (-9999) ; CATEGORICAL = all ; IDVARIABLE = id ; ANALYSIS: ESTIMATOR = wlsmv ; PARAMETERIZATION = theta ; OUTPUT: SAVEDATA: save=fscores ; file=ref.dat ; MODEL: f by u1@1.01409 ; [u1$1@2.33686] ; f by u2@.97653 ; [u2$1@2.31682] ; f by u3@.96534 ; [u3$1@2.27431] ; f by u4@.98097 ; [u4$1@2.30823] ; f by u5@.90888 ; [u5$1@2.1895] ; f by u6@.97777 ; [u6$1@2.00644] ; f by u7@1.07641 ; [u7$1@2.11101] ; f by u8@.97867 ; [u8$1@2.03322] ; f by u9@1.0626 ; [u9$1@2.07416] ; f by u10@.99782 ; [u10$1@1.97926] ; f by u11@1.01746 ; [u11$1@1.80978] ; f by u12@1.04867 ; [u12$1@1.82851] ; f by u13@1.02499 ; [u13$1@1.80543] ; f by u14@.95264 ; [u14$1@1.77559] ; f by u15@.95452 ; [u15$1@1.77015] ; f by u16@1.00153 ; [u16$1@1.18424] ; f by u17@.98187 ; [u17$1@1.20945] ; f by u18@1.00501 ; [u18$1@1.21787] ; f by u19@1.03146 ; [u19$1@1.19854] ; f by u20@.99537 ; [u20$1@1.16959] ; f by u21@.98347 ; [u21$1@.38352] ; f by u22@1.01198 ; [u22$1@.3879] ; f by u23@1.03699 ; [u23$1@.38417] ; f by u24@.99536 ; [u24$1@.32265] ; f by u25@.99005 ; [u25$1@.37819] ; f by u26@1.0051 ; [u26$1@-.00302] ; f by u27@1.00563 ; [u27$1@.01333] ; f by u28@1.03124 ; [u28$1@-.00702] ; f by u29@1.01361 ; [u29$1@-.01338] ; f by u30@1.06863 ; [u30$1@.00899] ; f@1 ; INPUT READING TERMINATED NORMALLY Variable List - u1 : u2 : u3 : u4 : u5 : u6 : u7 : u8 : u9 : u10 : u11 : u12 : u13 : u14 : u15 : u16 : u17 : u18 : u19 : u20 : u21 : u22 : u23 : u24 : u25 : u26 : u27 : u28 : u29 : u30 : id : SUMMARY OF ANALYSIS Number of groups 1 Number of observations 5000 Number of dependent variables 30 Number of independent variables 0 Number of continuous latent variables 1 Observed dependent variables Binary and ordered categorical (ordinal) U1 U2 U3 U4 U5 U6 U7 U8 U9 U10 U11 U12 U13 U14 U15 U16 U17 U18 U19 U20 U21 U22 U23 U24 U25 U26 U27 U28 U29 U30 Continuous latent variables F Variables with special functions ID variable ID Estimator WLSMV Maximum number of iterations 1000 Convergence criterion 0.500D-04 Maximum number of steepest descent iterations 20 Maximum number of iterations for H1 2000 Convergence criterion for H1 0.100D-03 Parameterization THETA Link PROBIT Input data file(s) __000001.dat Input data format FREE SUMMARY OF DATA Number of missing data patterns 1 COVARIANCE COVERAGE OF DATA Minimum covariance coverage value 0.100 PROPORTION OF DATA PRESENT Covariance Coverage U1 U2 U3 U4 U5 ________ ________ ________ ________ ________ U1 1.000 U2 1.000 1.000 U3 1.000 1.000 1.000 U4 1.000 1.000 1.000 1.000 U5 1.000 1.000 1.000 1.000 1.000 U6 1.000 1.000 1.000 1.000 1.000 U7 1.000 1.000 1.000 1.000 1.000 U8 1.000 1.000 1.000 1.000 1.000 U9 1.000 1.000 1.000 1.000 1.000 U10 1.000 1.000 1.000 1.000 1.000 U11 1.000 1.000 1.000 1.000 1.000 U12 1.000 1.000 1.000 1.000 1.000 U13 1.000 1.000 1.000 1.000 1.000 U14 1.000 1.000 1.000 1.000 1.000 U15 1.000 1.000 1.000 1.000 1.000 U16 1.000 1.000 1.000 1.000 1.000 U17 1.000 1.000 1.000 1.000 1.000 U18 1.000 1.000 1.000 1.000 1.000 U19 1.000 1.000 1.000 1.000 1.000 U20 1.000 1.000 1.000 1.000 1.000 U21 1.000 1.000 1.000 1.000 1.000 U22 1.000 1.000 1.000 1.000 1.000 U23 1.000 1.000 1.000 1.000 1.000 U24 1.000 1.000 1.000 1.000 1.000 U25 1.000 1.000 1.000 1.000 1.000 U26 1.000 1.000 1.000 1.000 1.000 U27 1.000 1.000 1.000 1.000 1.000 U28 1.000 1.000 1.000 1.000 1.000 U29 1.000 1.000 1.000 1.000 1.000 U30 1.000 1.000 1.000 1.000 1.000 Covariance Coverage U6 U7 U8 U9 U10 ________ ________ ________ ________ ________ U6 1.000 U7 1.000 1.000 U8 1.000 1.000 1.000 U9 1.000 1.000 1.000 1.000 U10 1.000 1.000 1.000 1.000 1.000 U11 1.000 1.000 1.000 1.000 1.000 U12 1.000 1.000 1.000 1.000 1.000 U13 1.000 1.000 1.000 1.000 1.000 U14 1.000 1.000 1.000 1.000 1.000 U15 1.000 1.000 1.000 1.000 1.000 U16 1.000 1.000 1.000 1.000 1.000 U17 1.000 1.000 1.000 1.000 1.000 U18 1.000 1.000 1.000 1.000 1.000 U19 1.000 1.000 1.000 1.000 1.000 U20 1.000 1.000 1.000 1.000 1.000 U21 1.000 1.000 1.000 1.000 1.000 U22 1.000 1.000 1.000 1.000 1.000 U23 1.000 1.000 1.000 1.000 1.000 U24 1.000 1.000 1.000 1.000 1.000 U25 1.000 1.000 1.000 1.000 1.000 U26 1.000 1.000 1.000 1.000 1.000 U27 1.000 1.000 1.000 1.000 1.000 U28 1.000 1.000 1.000 1.000 1.000 U29 1.000 1.000 1.000 1.000 1.000 U30 1.000 1.000 1.000 1.000 1.000 Covariance Coverage U11 U12 U13 U14 U15 ________ ________ ________ ________ ________ U11 1.000 U12 1.000 1.000 U13 1.000 1.000 1.000 U14 1.000 1.000 1.000 1.000 U15 1.000 1.000 1.000 1.000 1.000 U16 1.000 1.000 1.000 1.000 1.000 U17 1.000 1.000 1.000 1.000 1.000 U18 1.000 1.000 1.000 1.000 1.000 U19 1.000 1.000 1.000 1.000 1.000 U20 1.000 1.000 1.000 1.000 1.000 U21 1.000 1.000 1.000 1.000 1.000 U22 1.000 1.000 1.000 1.000 1.000 U23 1.000 1.000 1.000 1.000 1.000 U24 1.000 1.000 1.000 1.000 1.000 U25 1.000 1.000 1.000 1.000 1.000 U26 1.000 1.000 1.000 1.000 1.000 U27 1.000 1.000 1.000 1.000 1.000 U28 1.000 1.000 1.000 1.000 1.000 U29 1.000 1.000 1.000 1.000 1.000 U30 1.000 1.000 1.000 1.000 1.000 Covariance Coverage U16 U17 U18 U19 U20 ________ ________ ________ ________ ________ U16 1.000 U17 1.000 1.000 U18 1.000 1.000 1.000 U19 1.000 1.000 1.000 1.000 U20 1.000 1.000 1.000 1.000 1.000 U21 1.000 1.000 1.000 1.000 1.000 U22 1.000 1.000 1.000 1.000 1.000 U23 1.000 1.000 1.000 1.000 1.000 U24 1.000 1.000 1.000 1.000 1.000 U25 1.000 1.000 1.000 1.000 1.000 U26 1.000 1.000 1.000 1.000 1.000 U27 1.000 1.000 1.000 1.000 1.000 U28 1.000 1.000 1.000 1.000 1.000 U29 1.000 1.000 1.000 1.000 1.000 U30 1.000 1.000 1.000 1.000 1.000 Covariance Coverage U21 U22 U23 U24 U25 ________ ________ ________ ________ ________ U21 1.000 U22 1.000 1.000 U23 1.000 1.000 1.000 U24 1.000 1.000 1.000 1.000 U25 1.000 1.000 1.000 1.000 1.000 U26 1.000 1.000 1.000 1.000 1.000 U27 1.000 1.000 1.000 1.000 1.000 U28 1.000 1.000 1.000 1.000 1.000 U29 1.000 1.000 1.000 1.000 1.000 U30 1.000 1.000 1.000 1.000 1.000 Covariance Coverage U26 U27 U28 U29 U30 ________ ________ ________ ________ ________ U26 1.000 U27 1.000 1.000 U28 1.000 1.000 1.000 U29 1.000 1.000 1.000 1.000 U30 1.000 1.000 1.000 1.000 1.000 UNIVARIATE PROPORTIONS AND COUNTS FOR CATEGORICAL VARIABLES U1 Category 1 0.950 4752.000 Category 2 0.050 248.000 U2 Category 1 0.955 4773.000 Category 2 0.045 227.000 U3 Category 1 0.949 4744.000 Category 2 0.051 256.000 U4 Category 1 0.949 4743.000 Category 2 0.051 257.000 U5 Category 1 0.949 4746.000 Category 2 0.051 254.000 U6 Category 1 0.929 4643.000 Category 2 0.071 357.000 U7 Category 1 0.928 4641.000 Category 2 0.072 359.000 U8 Category 1 0.930 4648.000 Category 2 0.070 352.000 U9 Category 1 0.926 4632.000 Category 2 0.074 368.000 U10 Category 1 0.922 4608.000 Category 2 0.078 392.000 U11 Category 1 0.894 4468.000 Category 2 0.106 532.000 U12 Category 1 0.896 4478.000 Category 2 0.104 522.000 U13 Category 1 0.899 4496.000 Category 2 0.101 504.000 U14 Category 1 0.899 4495.000 Category 2 0.101 505.000 U15 Category 1 0.900 4499.000 Category 2 0.100 501.000 U16 Category 1 0.793 3967.000 Category 2 0.207 1033.000 U17 Category 1 0.803 4017.000 Category 2 0.197 983.000 U18 Category 1 0.805 4023.000 Category 2 0.195 977.000 U19 Category 1 0.801 4004.000 Category 2 0.199 996.000 U20 Category 1 0.795 3973.000 Category 2 0.205 1027.000 U21 Category 1 0.602 3011.000 Category 2 0.398 1989.000 U22 Category 1 0.605 3024.000 Category 2 0.395 1976.000 U23 Category 1 0.610 3052.000 Category 2 0.390 1948.000 U24 Category 1 0.593 2965.000 Category 2 0.407 2035.000 U25 Category 1 0.608 3040.000 Category 2 0.392 1960.000 U26 Category 1 0.506 2531.000 Category 2 0.494 2469.000 U27 Category 1 0.503 2515.000 Category 2 0.497 2485.000 U28 Category 1 0.499 2494.000 Category 2 0.501 2506.000 U29 Category 1 0.503 2517.000 Category 2 0.497 2483.000 U30 Category 1 0.506 2531.000 Category 2 0.494 2469.000 THE MODEL ESTIMATION TERMINATED NORMALLY MODEL FIT INFORMATION Number of Free Parameters 0 Chi-Square Test of Model Fit Value 424.486* Degrees of Freedom 465 P-Value 0.9110 * The chi-square value for MLM, MLMV, MLR, ULSMV, WLSM and WLSMV cannot be used for chi-square difference testing in the regular way. MLM, MLR and WLSM chi-square difference testing is described on the Mplus website. MLMV, WLSMV, and ULSMV difference testing is done using the DIFFTEST option. RMSEA (Root Mean Square Error Of Approximation) Estimate 0.000 90 Percent C.I. 0.000 0.002 Probability RMSEA <= .05 1.000 CFI/TLI CFI 1.000 TLI 1.000 Chi-Square Test of Model Fit for the Baseline Model Value 79339.170 Degrees of Freedom 435 P-Value 0.0000 SRMR (Standardized Root Mean Square Residual) Value 0.025 Optimum Function Value for Weighted Least-Squares Estimator Value 0.37896276D-01 MODEL RESULTS Two-Tailed Estimate S.E. Est./S.E. P-Value F BY U1 1.014 0.000 999.000 999.000 U2 0.977 0.000 999.000 999.000 U3 0.965 0.000 999.000 999.000 U4 0.981 0.000 999.000 999.000 U5 0.909 0.000 999.000 999.000 U6 0.978 0.000 999.000 999.000 U7 1.076 0.000 999.000 999.000 U8 0.979 0.000 999.000 999.000 U9 1.063 0.000 999.000 999.000 U10 0.998 0.000 999.000 999.000 U11 1.017 0.000 999.000 999.000 U12 1.049 0.000 999.000 999.000 U13 1.025 0.000 999.000 999.000 U14 0.953 0.000 999.000 999.000 U15 0.955 0.000 999.000 999.000 U16 1.002 0.000 999.000 999.000 U17 0.982 0.000 999.000 999.000 U18 1.005 0.000 999.000 999.000 U19 1.031 0.000 999.000 999.000 U20 0.995 0.000 999.000 999.000 U21 0.983 0.000 999.000 999.000 U22 1.012 0.000 999.000 999.000 U23 1.037 0.000 999.000 999.000 U24 0.995 0.000 999.000 999.000 U25 0.990 0.000 999.000 999.000 U26 1.005 0.000 999.000 999.000 U27 1.006 0.000 999.000 999.000 U28 1.031 0.000 999.000 999.000 U29 1.014 0.000 999.000 999.000 U30 1.069 0.000 999.000 999.000 Thresholds U1$1 2.337 0.000 999.000 999.000 U2$1 2.317 0.000 999.000 999.000 U3$1 2.274 0.000 999.000 999.000 U4$1 2.308 0.000 999.000 999.000 U5$1 2.190 0.000 999.000 999.000 U6$1 2.006 0.000 999.000 999.000 U7$1 2.111 0.000 999.000 999.000 U8$1 2.033 0.000 999.000 999.000 U9$1 2.074 0.000 999.000 999.000 U10$1 1.979 0.000 999.000 999.000 U11$1 1.810 0.000 999.000 999.000 U12$1 1.829 0.000 999.000 999.000 U13$1 1.805 0.000 999.000 999.000 U14$1 1.776 0.000 999.000 999.000 U15$1 1.770 0.000 999.000 999.000 U16$1 1.184 0.000 999.000 999.000 U17$1 1.209 0.000 999.000 999.000 U18$1 1.218 0.000 999.000 999.000 U19$1 1.199 0.000 999.000 999.000 U20$1 1.170 0.000 999.000 999.000 U21$1 0.384 0.000 999.000 999.000 U22$1 0.388 0.000 999.000 999.000 U23$1 0.384 0.000 999.000 999.000 U24$1 0.323 0.000 999.000 999.000 U25$1 0.378 0.000 999.000 999.000 U26$1 -0.003 0.000 999.000 999.000 U27$1 0.013 0.000 999.000 999.000 U28$1 -0.007 0.000 999.000 999.000 U29$1 -0.013 0.000 999.000 999.000 U30$1 0.009 0.000 999.000 999.000 Variances F 1.000 0.000 999.000 999.000 QUALITY OF NUMERICAL RESULTS Condition Number for the Information Matrix 0.000E+00 (ratio of smallest to largest eigenvalue) IRT PARAMETERIZATION Two-Tailed Estimate S.E. Est./S.E. P-Value Item Discriminations F BY U1 1.014 0.000 0.000 1.000 U2 0.977 0.000 0.000 1.000 U3 0.965 0.000 0.000 1.000 U4 0.981 0.000 0.000 1.000 U5 0.909 0.000 0.000 1.000 U6 0.978 0.000 0.000 1.000 U7 1.076 0.000 0.000 1.000 U8 0.979 0.000 0.000 1.000 U9 1.063 0.000 0.000 1.000 U10 0.998 0.000 0.000 1.000 U11 1.017 0.000 0.000 1.000 U12 1.049 0.000 0.000 1.000 U13 1.025 0.000 0.000 1.000 U14 0.953 0.000 0.000 1.000 U15 0.955 0.000 0.000 1.000 U16 1.002 0.000 0.000 1.000 U17 0.982 0.000 0.000 1.000 U18 1.005 0.000 0.000 1.000 U19 1.031 0.000 0.000 1.000 U20 0.995 0.000 0.000 1.000 U21 0.983 0.000 0.000 1.000 U22 1.012 0.000 0.000 1.000 U23 1.037 0.000 0.000 1.000 U24 0.995 0.000 0.000 1.000 U25 0.990 0.000 0.000 1.000 U26 1.005 0.000 0.000 1.000 U27 1.006 0.000 0.000 1.000 U28 1.031 0.000 0.000 1.000 U29 1.014 0.000 0.000 1.000 U30 1.069 0.000 0.000 1.000 Item Difficulties U1$1 2.304 0.000 0.000 1.000 U2$1 2.373 0.000 0.000 1.000 U3$1 2.356 0.000 0.000 1.000 U4$1 2.353 0.000 0.000 1.000 U5$1 2.409 0.000 0.000 1.000 U6$1 2.052 0.000 0.000 1.000 U7$1 1.961 0.000 0.000 1.000 U8$1 2.078 0.000 0.000 1.000 U9$1 1.952 0.000 0.000 1.000 U10$1 1.984 0.000 0.000 1.000 U11$1 1.779 0.000 0.000 1.000 U12$1 1.744 0.000 0.000 1.000 U13$1 1.761 0.000 0.000 1.000 U14$1 1.864 0.000 0.000 1.000 U15$1 1.854 0.000 0.000 1.000 U16$1 1.182 0.000 0.000 1.000 U17$1 1.232 0.000 0.000 1.000 U18$1 1.212 0.000 0.000 1.000 U19$1 1.162 0.000 0.000 1.000 U20$1 1.175 0.000 0.000 1.000 U21$1 0.390 0.000 0.000 1.000 U22$1 0.383 0.000 0.000 1.000 U23$1 0.370 0.000 0.000 1.000 U24$1 0.324 0.000 0.000 1.000 U25$1 0.382 0.000 0.000 1.000 U26$1 -0.003 0.000 0.000 1.000 U27$1 0.013 0.000 0.000 1.000 U28$1 -0.007 0.000 0.000 1.000 U29$1 -0.013 0.000 0.000 1.000 U30$1 0.008 0.000 0.000 1.000 Variances F 1.000 0.000 0.000 1.000 SAMPLE STATISTICS FOR ESTIMATED FACTOR SCORES SAMPLE STATISTICS Means F F_SE ________ ________ 0.024 0.336 Covariances F F_SE ________ ________ F 0.819 F_SE -0.071 0.008 Correlations F F_SE ________ ________ F 1.000 F_SE -0.863 1.000 SAVEDATA INFORMATION Save file ref.dat Order and format of variables U1 F10.3 U2 F10.3 U3 F10.3 U4 F10.3 U5 F10.3 U6 F10.3 U7 F10.3 U8 F10.3 U9 F10.3 U10 F10.3 U11 F10.3 U12 F10.3 U13 F10.3 U14 F10.3 U15 F10.3 U16 F10.3 U17 F10.3 U18 F10.3 U19 F10.3 U20 F10.3 U21 F10.3 U22 F10.3 U23 F10.3 U24 F10.3 U25 F10.3 U26 F10.3 U27 F10.3 U28 F10.3 U29 F10.3 U30 F10.3 F F10.3 F_SE F10.3 ID I5 Save file format 32F10.3 I5 Save file record length 10000 Save missing symbol * Beginning Time: 13:11:31 Ending Time: 13:11:33 Elapsed Time: 00:00:02 MUTHEN & MUTHEN 3463 Stoner Ave. Los Angeles, CA 90066 Tel: (310) 391-9971 Fax: (310) 391-8971 Web: www.StatModel.com Support: Support@StatModel.com Copyright (c) 1998-2021 Muthen & Muthen . clear . runmplus_load_savedata , out(foo.out) . rename f f_est . rename f_se f_est_se . tempfile reference . save `reference' , replace (note: file /var/folders/lq/w3m6z0dj41ngkbbc0204xb7m0000gp/T//S_03002.000005 not found) file /var/folders/lq/w3m6z0dj41ngkbbc0204xb7m0000gp/T//S_03002.000005 saved
The focal group only answers questions 1-10.
. local model "" . use `f1' , clear . keep if focal==1 (5,000 observations deleted) . forvalues i=1/10 { 2. local l`i' = svalues[`i',1] 3. local t=`i'+30 4. local t`i' = svalues[`t',1] 5. local model "`model' f by u`i'@`l`i'' ;" 6. local model "`model' [u`i'$1@`t`i''] ;" 7. } . runmplus u1-u10 , cat(all) idvariable(id) /// > estimator(wlsmv) parameterization(theta) /// > model(`model' f@1;) /// > savedata(save=fscores; file=foc.dat;) /// > savelog(goo) Mplus VERSION 8.6 (Mac) MUTHEN & MUTHEN Running input file '__000001.inp'... Beginning Time: 13:11:34 Ending Time: 13:11:35 Elapsed Time: 00:00:01 Output saved in '__000001.out'. THE MODEL ESTIMATION TERMINATED NORMALLY Mplus VERSION 8.6 (Mac) MUTHEN & MUTHEN 08/20/2021 1:11 PM INPUT INSTRUCTIONS TITLE: Variable List - u1 : u2 : u3 : u4 : u5 : u6 : u7 : u8 : u9 : u10 : id : DATA: FILE = __000001.dat ; VARIABLE: NAMES = u1 u2 u3 u4 u5 u6 u7 u8 u9 u10 id ; MISSING ARE ALL (-9999) ; CATEGORICAL = all ; IDVARIABLE = id ; ANALYSIS: ESTIMATOR = wlsmv ; PARAMETERIZATION = theta ; OUTPUT: SAVEDATA: save=fscores ; file=foc.dat ; MODEL: f by u1@1.01409 ; [u1$1@2.33686] ; f by u2@.97653 ; [u2$1@2.31682] ; f by u3@.96534 ; [u3$1@2.27431] ; f by u4@.98097 ; [u4$1@2.30823] ; f by u5@.90888 ; [u5$1@2.1895] ; f by u6@.97777 ; [u6$1@2.00644] ; f by u7@1.07641 ; [u7$1@2.11101] ; f by u8@.97867 ; [u8$1@2.03322] ; f by u9@1.0626 ; [u9$1@2.07416] ; f by u10@.99782 ; [u10$1@1.97926] ; f@1 ; INPUT READING TERMINATED NORMALLY Variable List - u1 : u2 : u3 : u4 : u5 : u6 : u7 : u8 : u9 : u10 : id : SUMMARY OF ANALYSIS Number of groups 1 Number of observations 5001 Number of dependent variables 10 Number of independent variables 0 Number of continuous latent variables 1 Observed dependent variables Binary and ordered categorical (ordinal) U1 U2 U3 U4 U5 U6 U7 U8 U9 U10 Continuous latent variables F Variables with special functions ID variable ID Estimator WLSMV Maximum number of iterations 1000 Convergence criterion 0.500D-04 Maximum number of steepest descent iterations 20 Maximum number of iterations for H1 2000 Convergence criterion for H1 0.100D-03 Parameterization THETA Link PROBIT Input data file(s) __000001.dat Input data format FREE SUMMARY OF DATA Number of missing data patterns 1 COVARIANCE COVERAGE OF DATA Minimum covariance coverage value 0.100 PROPORTION OF DATA PRESENT Covariance Coverage U1 U2 U3 U4 U5 ________ ________ ________ ________ ________ U1 1.000 U2 1.000 1.000 U3 1.000 1.000 1.000 U4 1.000 1.000 1.000 1.000 U5 1.000 1.000 1.000 1.000 1.000 U6 1.000 1.000 1.000 1.000 1.000 U7 1.000 1.000 1.000 1.000 1.000 U8 1.000 1.000 1.000 1.000 1.000 U9 1.000 1.000 1.000 1.000 1.000 U10 1.000 1.000 1.000 1.000 1.000 Covariance Coverage U6 U7 U8 U9 U10 ________ ________ ________ ________ ________ U6 1.000 U7 1.000 1.000 U8 1.000 1.000 1.000 U9 1.000 1.000 1.000 1.000 U10 1.000 1.000 1.000 1.000 1.000 UNIVARIATE PROPORTIONS AND COUNTS FOR CATEGORICAL VARIABLES U1 Category 1 0.949 4745.000 Category 2 0.051 256.000 U2 Category 1 0.948 4741.000 Category 2 0.052 260.000 U3 Category 1 0.949 4748.000 Category 2 0.051 253.000 U4 Category 1 0.952 4761.000 Category 2 0.048 240.000 U5 Category 1 0.946 4729.000 Category 2 0.054 272.000 U6 Category 1 0.920 4601.000 Category 2 0.080 400.000 U7 Category 1 0.921 4606.000 Category 2 0.079 395.000 U8 Category 1 0.924 4622.000 Category 2 0.076 379.000 U9 Category 1 0.918 4593.000 Category 2 0.082 408.000 U10 Category 1 0.917 4587.000 Category 2 0.083 414.000 THE MODEL ESTIMATION TERMINATED NORMALLY MODEL FIT INFORMATION Number of Free Parameters 0 Chi-Square Test of Model Fit Value 47.798* Degrees of Freedom 55 P-Value 0.7437 * The chi-square value for MLM, MLMV, MLR, ULSMV, WLSM and WLSMV cannot be used for chi-square difference testing in the regular way. MLM, MLR and WLSM chi-square difference testing is described on the Mplus website. MLMV, WLSMV, and ULSMV difference testing is done using the DIFFTEST option. RMSEA (Root Mean Square Error Of Approximation) Estimate 0.000 90 Percent C.I. 0.000 0.007 Probability RMSEA <= .05 1.000 CFI/TLI CFI 1.000 TLI 1.000 Chi-Square Test of Model Fit for the Baseline Model Value 6319.812 Degrees of Freedom 45 P-Value 0.0000 SRMR (Standardized Root Mean Square Residual) Value 0.027 Optimum Function Value for Weighted Least-Squares Estimator Value 0.45244242D-02 MODEL RESULTS Two-Tailed Estimate S.E. Est./S.E. P-Value F BY U1 1.014 0.000 999.000 999.000 U2 0.977 0.000 999.000 999.000 U3 0.965 0.000 999.000 999.000 U4 0.981 0.000 999.000 999.000 U5 0.909 0.000 999.000 999.000 U6 0.978 0.000 999.000 999.000 U7 1.076 0.000 999.000 999.000 U8 0.979 0.000 999.000 999.000 U9 1.063 0.000 999.000 999.000 U10 0.998 0.000 999.000 999.000 Thresholds U1$1 2.337 0.000 999.000 999.000 U2$1 2.317 0.000 999.000 999.000 U3$1 2.274 0.000 999.000 999.000 U4$1 2.308 0.000 999.000 999.000 U5$1 2.190 0.000 999.000 999.000 U6$1 2.006 0.000 999.000 999.000 U7$1 2.111 0.000 999.000 999.000 U8$1 2.033 0.000 999.000 999.000 U9$1 2.074 0.000 999.000 999.000 U10$1 1.979 0.000 999.000 999.000 Variances F 1.000 0.000 999.000 999.000 QUALITY OF NUMERICAL RESULTS Condition Number for the Information Matrix 0.000E+00 (ratio of smallest to largest eigenvalue) IRT PARAMETERIZATION Two-Tailed Estimate S.E. Est./S.E. P-Value Item Discriminations F BY U1 1.014 0.000 0.000 1.000 U2 0.977 0.000 0.000 1.000 U3 0.965 0.000 0.000 1.000 U4 0.981 0.000 0.000 1.000 U5 0.909 0.000 0.000 1.000 U6 0.978 0.000 0.000 1.000 U7 1.076 0.000 0.000 1.000 U8 0.979 0.000 0.000 1.000 U9 1.063 0.000 0.000 1.000 U10 0.998 0.000 0.000 1.000 Item Difficulties U1$1 2.304 0.000 0.000 1.000 U2$1 2.373 0.000 0.000 1.000 U3$1 2.356 0.000 0.000 1.000 U4$1 2.353 0.000 0.000 1.000 U5$1 2.409 0.000 0.000 1.000 U6$1 2.052 0.000 0.000 1.000 U7$1 1.961 0.000 0.000 1.000 U8$1 2.078 0.000 0.000 1.000 U9$1 1.952 0.000 0.000 1.000 U10$1 1.984 0.000 0.000 1.000 Variances F 1.000 0.000 0.000 1.000 SAMPLE STATISTICS FOR ESTIMATED FACTOR SCORES SAMPLE STATISTICS Means F F_SE ________ ________ 0.154 0.697 Covariances F F_SE ________ ________ F 0.419 F_SE -0.100 0.026 Correlations F F_SE ________ ________ F 1.000 F_SE -0.966 1.000 SAVEDATA INFORMATION Save file foc.dat Order and format of variables U1 F10.3 U2 F10.3 U3 F10.3 U4 F10.3 U5 F10.3 U6 F10.3 U7 F10.3 U8 F10.3 U9 F10.3 U10 F10.3 F F10.3 F_SE F10.3 ID I6 Save file format 12F10.3 I6 Save file record length 10000 Save missing symbol * Beginning Time: 13:11:34 Ending Time: 13:11:35 Elapsed Time: 00:00:01 MUTHEN & MUTHEN 3463 Stoner Ave. Los Angeles, CA 90066 Tel: (310) 391-9971 Fax: (310) 391-8971 Web: www.StatModel.com Support: Support@StatModel.com Copyright (c) 1998-2021 Muthen & Muthen . clear . runmplus_load_savedata , out(goo.out) . rename f f_est . rename f_se f_est_se . tempfile focal . save `focal' , replace (note: file /var/folders/lq/w3m6z0dj41ngkbbc0204xb7m0000gp/T//S_03002.000006 not found) file /var/folders/lq/w3m6z0dj41ngkbbc0204xb7m0000gp/T//S_03002.000006 saved
Match files back together
. use `focal' . append using `reference' . merge 1:1 id using `f1' , nogen (note: variable u1 was byte, now float to accommodate using data's values) (note: variable u2 was byte, now float to accommodate using data's values) (note: variable u3 was byte, now float to accommodate using data's values) (note: variable u4 was byte, now float to accommodate using data's values) (note: variable u5 was byte, now float to accommodate using data's values) (note: variable u6 was byte, now float to accommodate using data's values) (note: variable u7 was byte, now float to accommodate using data's values) (note: variable u8 was byte, now float to accommodate using data's values) (note: variable u9 was byte, now float to accommodate using data's values) (note: variable u10 was byte, now float to accommodate using data's values) (note: variable u11 was byte, now float to accommodate using data's values) (note: variable u12 was byte, now float to accommodate using data's values) (note: variable u13 was byte, now float to accommodate using data's values) (note: variable u14 was byte, now float to accommodate using data's values) (note: variable u15 was byte, now float to accommodate using data's values) (note: variable u16 was byte, now float to accommodate using data's values) (note: variable u17 was byte, now float to accommodate using data's values) (note: variable u18 was byte, now float to accommodate using data's values) (note: variable u19 was byte, now float to accommodate using data's values) (note: variable u20 was byte, now float to accommodate using data's values) (note: variable u21 was byte, now float to accommodate using data's values) (note: variable u22 was byte, now float to accommodate using data's values) (note: variable u23 was byte, now float to accommodate using data's values) (note: variable u24 was byte, now float to accommodate using data's values) (note: variable u25 was byte, now float to accommodate using data's values) (note: variable u26 was byte, now float to accommodate using data's values) (note: variable u27 was byte, now float to accommodate using data's values) (note: variable u28 was byte, now float to accommodate using data's values) (note: variable u29 was byte, now float to accommodate using data's values) (note: variable u30 was byte, now float to accommodate using data's values) (note: variable id was int, now float to accommodate using data's values) Result # of obs. ───────────────────────────────────────── not matched 0 matched 10,001 ───────────────────────────────────────── . su Variable │ Obs Mean Std. Dev. Min Max ─────────────┼───────────────────────────────────────────────────────── u1 │ 10,001 .050395 .2187695 0 1 u2 │ 10,001 .0486951 .2152407 0 1 u3 │ 10,001 .0508949 .2197941 0 1 u4 │ 10,001 .049695 .217325 0 1 u5 │ 10,001 .0525947 .2232342 0 1 ─────────────┼───────────────────────────────────────────────────────── u6 │ 10,001 .0756924 .2645186 0 1 u7 │ 10,001 .0753925 .2640368 0 1 u8 │ 10,001 .0730927 .2603016 0 1 u9 │ 10,001 .0775922 .2675422 0 1 u10 │ 10,001 .0805919 .272221 0 1 ─────────────┼───────────────────────────────────────────────────────── f_est │ 10,001 .0889216 .7894857 -1.373 3.324 f_est_se │ 10,001 .5163873 .2227443 .233 .801 id │ 10,001 5001 2887.184 1 10001 u11 │ 5,000 .1064 .3083797 0 1 u12 │ 5,000 .1044 .3058093 0 1 ─────────────┼───────────────────────────────────────────────────────── u13 │ 5,000 .1008 .3010938 0 1 u14 │ 5,000 .101 .3013589 0 1 u15 │ 5,000 .1002 .3002965 0 1 u16 │ 5,000 .2066 .4049064 0 1 u17 │ 5,000 .1966 .397467 0 1 ─────────────┼───────────────────────────────────────────────────────── u18 │ 5,000 .1954 .396548 0 1 u19 │ 5,000 .1992 .3994387 0 1 u20 │ 5,000 .2054 .404034 0 1 u21 │ 5,000 .3978 .4894927 0 1 u22 │ 5,000 .3952 .4889425 0 1 ─────────────┼───────────────────────────────────────────────────────── u23 │ 5,000 .3896 .4877083 0 1 u24 │ 5,000 .407 .491324 0 1 u25 │ 5,000 .392 .4882455 0 1 u26 │ 5,000 .4938 .5000116 0 1 u27 │ 5,000 .497 .500041 0 1 ─────────────┼───────────────────────────────────────────────────────── u28 │ 5,000 .5012 .5000486 0 1 u29 │ 5,000 .4966 .5000384 0 1 u30 │ 5,000 .4938 .5000116 0 1 q │ 10,001 .0129183 .9931195 -3.581353 3.495501 focal │ 10,001 .50005 .500025 0 1 ─────────────┼───────────────────────────────────────────────────────── sumscore │ 10,001 6.623538 5.817109 0 30
Pyramid plot of factor score estimate by group
(file /Users/rnj/Dropbox/Work/Syntax/pyramid.png written in PNG format)
See how the type-I error rate is reasonably close to the nominal 5% level. A type-I error is concluding that an item has DIF when it does not have DIF (we know they all do not have DIF because that is how we generated them). Let’s say any finding of a significant effect of i.focal
or focal#c.q
is a type-I error.
. forvalues i=1/10 { 2. logit u`i' i.focal##c.q 3. } Iteration 0: log likelihood = -1996.9651 Iteration 1: log likelihood = -1605.5008 Iteration 2: log likelihood = -1355.9574 Iteration 3: log likelihood = -1345.3758 Iteration 4: log likelihood = -1345.33 Iteration 5: log likelihood = -1345.33 Logistic regression Number of obs = 10,001 LR chi2(3) = 1303.27 Prob > chi2 = 0.0000 Log likelihood = -1345.33 Pseudo R2 = 0.3263 ─────────────┬──────────────────────────────────────────────────────────────── u1 │ Coef. Std. Err. z P>|z| [95% Conf. Interval] ─────────────┼──────────────────────────────────────────────────────────────── 1.focal │ -.0541798 .2109964 -0.26 0.797 -.4677252 .3593656 q │ 2.041188 .1043095 19.57 0.000 1.836745 2.245631 │ focal#c.q │ 1 │ .0612937 .1472744 0.42 0.677 -.2273588 .3499462 │ _cons │ -4.475801 .1481821 -30.20 0.000 -4.766232 -4.185369 ─────────────┴──────────────────────────────────────────────────────────────── Iteration 0: log likelihood = -1946.7453 Iteration 1: log likelihood = -1583.1608 Iteration 2: log likelihood = -1350.4161 Iteration 3: log likelihood = -1341.2978 Iteration 4: log likelihood = -1341.2495 Iteration 5: log likelihood = -1341.2495 Logistic regression Number of obs = 10,001 LR chi2(3) = 1210.99 Prob > chi2 = 0.0000 Log likelihood = -1341.2495 Pseudo R2 = 0.3110 ─────────────┬──────────────────────────────────────────────────────────────── u2 │ Coef. Std. Err. z P>|z| [95% Conf. Interval] ─────────────┼──────────────────────────────────────────────────────────────── 1.focal │ .403318 .2094668 1.93 0.054 -.0072293 .8138653 q │ 2.098197 .109934 19.09 0.000 1.882731 2.313664 │ focal#c.q │ 1 │ -.1949534 .1458075 -1.34 0.181 -.4807308 .0908241 │ _cons │ -4.667082 .1597794 -29.21 0.000 -4.980244 -4.35392 ─────────────┴──────────────────────────────────────────────────────────────── Iteration 0: log likelihood = -2011.6198 Iteration 1: log likelihood = -1637.1294 Iteration 2: log likelihood = -1422.7188 Iteration 3: log likelihood = -1415.6532 Iteration 4: log likelihood = -1415.6175 Iteration 5: log likelihood = -1415.6175 Logistic regression Number of obs = 10,001 LR chi2(3) = 1192.00 Prob > chi2 = 0.0000 Log likelihood = -1415.6175 Pseudo R2 = 0.2963 ─────────────┬──────────────────────────────────────────────────────────────── u3 │ Coef. Std. Err. z P>|z| [95% Conf. Interval] ─────────────┼──────────────────────────────────────────────────────────────── 1.focal │ .1930252 .1955539 0.99 0.324 -.1902533 .5763037 q │ 2.015173 .1021407 19.73 0.000 1.814981 2.215365 │ focal#c.q │ 1 │ -.188861 .1387559 -1.36 0.173 -.4608175 .0830956 │ _cons │ -4.400949 .1438351 -30.60 0.000 -4.682861 -4.119037 ─────────────┴──────────────────────────────────────────────────────────────── Iteration 0: log likelihood = -1976.3606 Iteration 1: log likelihood = -1603.2029 Iteration 2: log likelihood = -1372.5586 Iteration 3: log likelihood = -1364.0271 Iteration 4: log likelihood = -1363.99 Iteration 5: log likelihood = -1363.99 Logistic regression Number of obs = 10,001 LR chi2(3) = 1224.74 Prob > chi2 = 0.0000 Log likelihood = -1363.99 Pseudo R2 = 0.3098 ─────────────┬──────────────────────────────────────────────────────────────── u4 │ Coef. Std. Err. z P>|z| [95% Conf. Interval] ─────────────┼──────────────────────────────────────────────────────────────── 1.focal │ .0328805 .2044798 0.16 0.872 -.3678925 .4336535 q │ 2.047888 .1033271 19.82 0.000 1.845371 2.250405 │ focal#c.q │ 1 │ -.1178829 .1434274 -0.82 0.411 -.3989955 .1632297 │ _cons │ -4.435502 .1457816 -30.43 0.000 -4.721229 -4.149776 ─────────────┴──────────────────────────────────────────────────────────────── Iteration 0: log likelihood = -2061.0617 Iteration 1: log likelihood = -1683.1117 Iteration 2: log likelihood = -1482.4644 Iteration 3: log likelihood = -1476.5498 Iteration 4: log likelihood = -1476.512 Iteration 5: log likelihood = -1476.512 Logistic regression Number of obs = 10,001 LR chi2(3) = 1169.10 Prob > chi2 = 0.0000 Log likelihood = -1476.512 Pseudo R2 = 0.2836 ─────────────┬──────────────────────────────────────────────────────────────── u5 │ Coef. Std. Err. z P>|z| [95% Conf. Interval] ─────────────┼──────────────────────────────────────────────────────────────── 1.focal │ .2780871 .1865839 1.49 0.136 -.0876106 .6437848 q │ 1.94329 .0995694 19.52 0.000 1.748138 2.138443 │ focal#c.q │ 1 │ -.1744182 .133971 -1.30 0.193 -.4369966 .0881602 │ _cons │ -4.324749 .139563 -30.99 0.000 -4.598287 -4.051211 ─────────────┴──────────────────────────────────────────────────────────────── Iteration 0: log likelihood = -2681.4743 Iteration 1: log likelihood = -2110.5374 Iteration 2: log likelihood = -1886.0808 Iteration 3: log likelihood = -1879.1908 Iteration 4: log likelihood = -1879.1587 Iteration 5: log likelihood = -1879.1587 Logistic regression Number of obs = 10,001 LR chi2(3) = 1604.63 Prob > chi2 = 0.0000 Log likelihood = -1879.1587 Pseudo R2 = 0.2992 ─────────────┬──────────────────────────────────────────────────────────────── u6 │ Coef. Std. Err. z P>|z| [95% Conf. Interval] ─────────────┼──────────────────────────────────────────────────────────────── 1.focal │ .2377681 .1556885 1.53 0.127 -.0673757 .542912 q │ 1.94666 .0889273 21.89 0.000 1.772366 2.120955 │ focal#c.q │ 1 │ -.084265 .120796 -0.70 0.485 -.3210207 .1524908 │ _cons │ -3.861973 .1156741 -33.39 0.000 -4.08869 -3.635256 ─────────────┴──────────────────────────────────────────────────────────────── Iteration 0: log likelihood = -2673.9607 Iteration 1: log likelihood = -2074.9823 Iteration 2: log likelihood = -1821.6572 Iteration 3: log likelihood = -1812.1294 Iteration 4: log likelihood = -1812.093 Iteration 5: log likelihood = -1812.093 Logistic regression Number of obs = 10,001 LR chi2(3) = 1723.74 Prob > chi2 = 0.0000 Log likelihood = -1812.093 Pseudo R2 = 0.3223 ─────────────┬──────────────────────────────────────────────────────────────── u7 │ Coef. Std. Err. z P>|z| [95% Conf. Interval] ─────────────┼──────────────────────────────────────────────────────────────── 1.focal │ -.1332035 .1640321 -0.81 0.417 -.4547004 .1882934 q │ 1.902192 .0872081 21.81 0.000 1.731267 2.073116 │ focal#c.q │ 1 │ .235329 .1264615 1.86 0.063 -.0125309 .4831889 │ _cons │ -3.805852 .1129382 -33.70 0.000 -4.027207 -3.584497 ─────────────┴──────────────────────────────────────────────────────────────── Iteration 0: log likelihood = -2615.9245 Iteration 1: log likelihood = -2067.475 Iteration 2: log likelihood = -1848.0155 Iteration 3: log likelihood = -1841.4272 Iteration 4: log likelihood = -1841.3952 Iteration 5: log likelihood = -1841.3952 Logistic regression Number of obs = 10,001 LR chi2(3) = 1549.06 Prob > chi2 = 0.0000 Log likelihood = -1841.3952 Pseudo R2 = 0.2961 ─────────────┬──────────────────────────────────────────────────────────────── u8 │ Coef. Std. Err. z P>|z| [95% Conf. Interval] ─────────────┼──────────────────────────────────────────────────────────────── 1.focal │ .23617 .1579182 1.50 0.135 -.073344 .5456841 q │ 1.960847 .0898478 21.82 0.000 1.784748 2.136945 │ focal#c.q │ 1 │ -.1357641 .121616 -1.12 0.264 -.374127 .1025989 │ _cons │ -3.897458 .1173793 -33.20 0.000 -4.127518 -3.667399 ─────────────┴──────────────────────────────────────────────────────────────── Iteration 0: log likelihood = -2728.7632 Iteration 1: log likelihood = -2111.5809 Iteration 2: log likelihood = -1858.3102 Iteration 3: log likelihood = -1849.061 Iteration 4: log likelihood = -1849.0264 Iteration 5: log likelihood = -1849.0264 Logistic regression Number of obs = 10,001 LR chi2(3) = 1759.47 Prob > chi2 = 0.0000 Log likelihood = -1849.0264 Pseudo R2 = 0.3224 ─────────────┬──────────────────────────────────────────────────────────────── u9 │ Coef. Std. Err. z P>|z| [95% Conf. Interval] ─────────────┼──────────────────────────────────────────────────────────────── 1.focal │ -.01748 .1612107 -0.11 0.914 -.3334472 .2984871 q │ 1.947741 .088081 22.11 0.000 1.775105 2.120377 │ focal#c.q │ 1 │ .142265 .1251908 1.14 0.256 -.1031045 .3876344 │ _cons │ -3.82012 .1137469 -33.58 0.000 -4.04306 -3.59718 ─────────────┴──────────────────────────────────────────────────────────────── Iteration 0: log likelihood = -2802.4074 Iteration 1: log likelihood = -2186.6497 Iteration 2: log likelihood = -1957.2862 Iteration 3: log likelihood = -1950.4299 Iteration 4: log likelihood = -1950.3994 Iteration 5: log likelihood = -1950.3994 Logistic regression Number of obs = 10,001 LR chi2(3) = 1704.02 Prob > chi2 = 0.0000 Log likelihood = -1950.3994 Pseudo R2 = 0.3040 ─────────────┬──────────────────────────────────────────────────────────────── u10 │ Coef. Std. Err. z P>|z| [95% Conf. Interval] ─────────────┼──────────────────────────────────────────────────────────────── 1.focal │ .0136848 .1509607 0.09 0.928 -.2821927 .3095622 q │ 1.89887 .0846118 22.44 0.000 1.733034 2.064706 │ focal#c.q │ 1 │ .0495596 .1190077 0.42 0.677 -.1836912 .2828104 │ _cons │ -3.678189 .1072464 -34.30 0.000 -3.888388 -3.46799 ─────────────┴────────────────────────────────────────────────────────────────
. forvalues i=1/10 { 2. logit u`i' i.focal##c.f_est 3. } Iteration 0: log likelihood = -1996.9651 Iteration 1: log likelihood = -1444.0276 Iteration 2: log likelihood = -1249.4473 Iteration 3: log likelihood = -1238.375 Iteration 4: log likelihood = -1238.3403 Iteration 5: log likelihood = -1238.3403 Logistic regression Number of obs = 10,001 LR chi2(3) = 1517.25 Prob > chi2 = 0.0000 Log likelihood = -1238.3403 Pseudo R2 = 0.3799 ──────────────┬──────────────────────────────────────────────────────────────── u1 │ Coef. Std. Err. z P>|z| [95% Conf. Interval] ──────────────┼──────────────────────────────────────────────────────────────── 1.focal │ -.4609363 .2309965 -2.00 0.046 -.9136811 -.0081915 f_est │ 2.159441 .1090277 19.81 0.000 1.94575 2.373131 │ focal#c.f_est │ 1 │ .5488406 .1662254 3.30 0.001 .2230448 .8746364 │ _cons │ -4.529971 .1520203 -29.80 0.000 -4.827925 -4.232017 ──────────────┴──────────────────────────────────────────────────────────────── Iteration 0: log likelihood = -1946.7453 Iteration 1: log likelihood = -1423.1899 Iteration 2: log likelihood = -1239.7219 Iteration 3: log likelihood = -1226.424 Iteration 4: log likelihood = -1226.338 Iteration 5: log likelihood = -1226.3379 Logistic regression Number of obs = 10,001 LR chi2(3) = 1440.81 Prob > chi2 = 0.0000 Log likelihood = -1226.3379 Pseudo R2 = 0.3701 ──────────────┬──────────────────────────────────────────────────────────────── u2 │ Coef. Std. Err. z P>|z| [95% Conf. Interval] ──────────────┼──────────────────────────────────────────────────────────────── 1.focal │ .0987777 .2287411 0.43 0.666 -.3495467 .5471021 f_est │ 2.273433 .1175636 19.34 0.000 2.043013 2.503854 │ focal#c.f_est │ 1 │ .2101677 .1634829 1.29 0.199 -.1102529 .5305884 │ _cons │ -4.793589 .1684611 -28.46 0.000 -5.123767 -4.463412 ──────────────┴──────────────────────────────────────────────────────────────── Iteration 0: log likelihood = -2011.6198 Iteration 1: log likelihood = -1967.4926 Iteration 2: log likelihood = -1347.4157 Iteration 3: log likelihood = -1278.2212 Iteration 4: log likelihood = -1274.8067 Iteration 5: log likelihood = -1274.8009 Iteration 6: log likelihood = -1274.8009 Logistic regression Number of obs = 10,001 LR chi2(3) = 1473.64 Prob > chi2 = 0.0000 Log likelihood = -1274.8009 Pseudo R2 = 0.3663 ──────────────┬──────────────────────────────────────────────────────────────── u3 │ Coef. Std. Err. z P>|z| [95% Conf. Interval] ──────────────┼──────────────────────────────────────────────────────────────── 1.focal │ -.0842917 .220735 -0.38 0.703 -.5169243 .3483409 f_est │ 2.266778 .1123715 20.17 0.000 2.046534 2.487022 │ focal#c.f_est │ 1 │ .187769 .1596139 1.18 0.239 -.1250685 .5006064 │ _cons │ -4.617136 .1570002 -29.41 0.000 -4.924851 -4.309421 ──────────────┴──────────────────────────────────────────────────────────────── Iteration 0: log likelihood = -1976.3606 Iteration 1: log likelihood = -1935.8175 Iteration 2: log likelihood = -1329.1271 Iteration 3: log likelihood = -1269.8037 Iteration 4: log likelihood = -1267.2189 Iteration 5: log likelihood = -1267.2133 Iteration 6: log likelihood = -1267.2133 Logistic regression Number of obs = 10,001 LR chi2(3) = 1418.29 Prob > chi2 = 0.0000 Log likelihood = -1267.2133 Pseudo R2 = 0.3588 ──────────────┬──────────────────────────────────────────────────────────────── u4 │ Coef. Std. Err. z P>|z| [95% Conf. Interval] ──────────────┼──────────────────────────────────────────────────────────────── 1.focal │ -.2849609 .220362 -1.29 0.196 -.7168625 .1469408 f_est │ 2.180674 .108545 20.09 0.000 1.96793 2.393419 │ focal#c.f_est │ 1 │ .2834307 .1588539 1.78 0.074 -.0279172 .5947787 │ _cons │ -4.506576 .1505061 -29.94 0.000 -4.801563 -4.211589 ──────────────┴──────────────────────────────────────────────────────────────── Iteration 0: log likelihood = -2061.0617 Iteration 1: log likelihood = -2008.4219 Iteration 2: log likelihood = -1434.7079 Iteration 3: log likelihood = -1371.8632 Iteration 4: log likelihood = -1369.3595 Iteration 5: log likelihood = -1369.3527 Iteration 6: log likelihood = -1369.3527 Logistic regression Number of obs = 10,001 LR chi2(3) = 1383.42 Prob > chi2 = 0.0000 Log likelihood = -1369.3527 Pseudo R2 = 0.3356 ──────────────┬──────────────────────────────────────────────────────────────── u5 │ Coef. Std. Err. z P>|z| [95% Conf. Interval] ──────────────┼──────────────────────────────────────────────────────────────── 1.focal │ -.0038278 .2001354 -0.02 0.985 -.3960859 .3884304 f_est │ 2.088623 .1051992 19.85 0.000 1.882436 2.294809 │ focal#c.f_est │ 1 │ .2117394 .1477552 1.43 0.152 -.0778555 .5013342 │ _cons │ -4.412121 .1450765 -30.41 0.000 -4.696466 -4.127776 ──────────────┴──────────────────────────────────────────────────────────────── Iteration 0: log likelihood = -2681.4743 Iteration 1: log likelihood = -2302.8295 Iteration 2: log likelihood = -1763.2541 Iteration 3: log likelihood = -1694.9643 Iteration 4: log likelihood = -1693.3586 Iteration 5: log likelihood = -1693.3546 Iteration 6: log likelihood = -1693.3546 Logistic regression Number of obs = 10,001 LR chi2(3) = 1976.24 Prob > chi2 = 0.0000 Log likelihood = -1693.3546 Pseudo R2 = 0.3685 ──────────────┬──────────────────────────────────────────────────────────────── u6 │ Coef. Std. Err. z P>|z| [95% Conf. Interval] ──────────────┼──────────────────────────────────────────────────────────────── 1.focal │ -.2994474 .1720579 -1.74 0.082 -.6366747 .0377799 f_est │ 2.037892 .0916184 22.24 0.000 1.858323 2.217461 │ focal#c.f_est │ 1 │ .609999 .1388094 4.39 0.000 .3379376 .8820603 │ _cons │ -3.881219 .116727 -33.25 0.000 -4.109999 -3.652438 ──────────────┴──────────────────────────────────────────────────────────────── Iteration 0: log likelihood = -2673.9607 Iteration 1: log likelihood = -2268.9386 Iteration 2: log likelihood = -1681.1379 Iteration 3: log likelihood = -1594.2697 Iteration 4: log likelihood = -1591.1527 Iteration 5: log likelihood = -1591.1494 Iteration 6: log likelihood = -1591.1494 Logistic regression Number of obs = 10,001 LR chi2(3) = 2165.62 Prob > chi2 = 0.0000 Log likelihood = -1591.1494 Pseudo R2 = 0.4049 ──────────────┬──────────────────────────────────────────────────────────────── u7 │ Coef. Std. Err. z P>|z| [95% Conf. Interval] ──────────────┼──────────────────────────────────────────────────────────────── 1.focal │ -.4616133 .1906904 -2.42 0.015 -.8353596 -.087867 f_est │ 2.187211 .0969439 22.56 0.000 1.997205 2.377218 │ focal#c.f_est │ 1 │ .7378798 .1523001 4.84 0.000 .4393771 1.036383 │ _cons │ -4.035244 .124554 -32.40 0.000 -4.279365 -3.791123 ──────────────┴──────────────────────────────────────────────────────────────── Iteration 0: log likelihood = -2615.9245 Iteration 1: log likelihood = -2255.965 Iteration 2: log likelihood = -1712.5828 Iteration 3: log likelihood = -1653.05 Iteration 4: log likelihood = -1651.7968 Iteration 5: log likelihood = -1651.7927 Iteration 6: log likelihood = -1651.7927 Logistic regression Number of obs = 10,001 LR chi2(3) = 1928.26 Prob > chi2 = 0.0000 Log likelihood = -1651.7927 Pseudo R2 = 0.3686 ──────────────┬──────────────────────────────────────────────────────────────── u8 │ Coef. Std. Err. z P>|z| [95% Conf. Interval] ──────────────┼──────────────────────────────────────────────────────────────── 1.focal │ -.0590926 .1763326 -0.34 0.738 -.4046982 .2865129 f_est │ 2.191298 .0977474 22.42 0.000 1.999717 2.38288 │ focal#c.f_est │ 1 │ .317793 .1401422 2.27 0.023 .0431194 .5924667 │ _cons │ -4.068907 .1262405 -32.23 0.000 -4.316334 -3.82148 ──────────────┴──────────────────────────────────────────────────────────────── Iteration 0: log likelihood = -2728.7632 Iteration 1: log likelihood = -2290.5504 Iteration 2: log likelihood = -1723.5771 Iteration 3: log likelihood = -1647.4923 Iteration 4: log likelihood = -1645.4327 Iteration 5: log likelihood = -1645.4292 Iteration 6: log likelihood = -1645.4292 Logistic regression Number of obs = 10,001 LR chi2(3) = 2166.67 Prob > chi2 = 0.0000 Log likelihood = -1645.4292 Pseudo R2 = 0.3970 ──────────────┬──────────────────────────────────────────────────────────────── u9 │ Coef. Std. Err. z P>|z| [95% Conf. Interval] ──────────────┼──────────────────────────────────────────────────────────────── 1.focal │ -.2297291 .1820959 -1.26 0.207 -.5866305 .1271723 f_est │ 2.233943 .0979127 22.82 0.000 2.042037 2.425848 │ focal#c.f_est │ 1 │ .5423606 .1466388 3.70 0.000 .2549539 .8297674 │ _cons │ -4.049666 .1253515 -32.31 0.000 -4.295351 -3.803982 ──────────────┴──────────────────────────────────────────────────────────────── Iteration 0: log likelihood = -2802.4074 Iteration 1: log likelihood = -2335.8654 Iteration 2: log likelihood = -1822.9185 Iteration 3: log likelihood = -1771.462 Iteration 4: log likelihood = -1770.5868 Iteration 5: log likelihood = -1770.5843 Iteration 6: log likelihood = -1770.5843 Logistic regression Number of obs = 10,001 LR chi2(3) = 2063.65 Prob > chi2 = 0.0000 Log likelihood = -1770.5843 Pseudo R2 = 0.3682 ──────────────┬──────────────────────────────────────────────────────────────── u10 │ Coef. Std. Err. z P>|z| [95% Conf. Interval] ──────────────┼──────────────────────────────────────────────────────────────── 1.focal │ -.2905401 .1655492 -1.76 0.079 -.6150105 .0339304 f_est │ 2.080355 .0902621 23.05 0.000 1.903445 2.257266 │ focal#c.f_est │ 1 │ .5283475 .1357359 3.89 0.000 .26231 .7943851 │ _cons │ -3.790544 .1126596 -33.65 0.000 -4.011353 -3.569735 ──────────────┴────────────────────────────────────────────────────────────────
6 of 10 items have DIF.
save working file
. tempfile f2 . save `f2' , replace (note: file /var/folders/lq/w3m6z0dj41ngkbbc0204xb7m0000gp/T//S_03002.000007 not found) file /var/folders/lq/w3m6z0dj41ngkbbc0204xb7m0000gp/T//S_03002.000007 saved
. local model "" . use `f1' , clear . keep if focal==1 (5,000 observations deleted) . forvalues i=1/10 { 2. local l`i' = svalues[`i',1] 3. local t=`i'+30 4. local t`i' = svalues[`t',1] 5. local model "`model' f by u`i'@`l`i'' ;" 6. local model "`model' [u`i'$1@`t`i''] ;" 7. } . runmplus u1-u10 , cat(all) idvariable(id) /// > estimator(bayes) /// > model(`model' f@1;) /// > savedata(save=fscores(1 1); file=foc_bayes.dat;) /// > savelog(hoo) Mplus VERSION 8.6 (Mac) MUTHEN & MUTHEN Running input file '__000001.inp'... TECHNICAL 8 OUTPUT FOR BAYES ESTIMATION POTENTIAL PARAMETER WITH TOTAL ITERATION SCALE REDUCTION HIGHEST PSR TIME TIME 100 1.000 0 1.09 1.1 DUE TO SAVE=FSCORES REQUEST IN THE SAVEDATA COMMAND, FACTOR SCORES (PLAUSIBLE VALUES) ARE OBTAINED BY MULTIPLE IMPUTATIONS. THE NUMBER OF IMPUTATIONS CAN BE CHANGED WITH THE SAVE=FSCORES REQUEST. GENERATING IMPUTATION 1 WRITING FACTOR SCORES (PLAUSIBLE VALUES) TO SAVEDATA AND/OR PLOT FILE Beginning Time: 13:11:40 Ending Time: 13:11:41 Elapsed Time: 00:00:01 Output saved in '__000001.out'. Mplus VERSION 8.6 (Mac) MUTHEN & MUTHEN 08/20/2021 1:11 PM INPUT INSTRUCTIONS TITLE: Variable List - u1 : u2 : u3 : u4 : u5 : u6 : u7 : u8 : u9 : u10 : id : DATA: FILE = __000001.dat ; VARIABLE: NAMES = u1 u2 u3 u4 u5 u6 u7 u8 u9 u10 id ; MISSING ARE ALL (-9999) ; CATEGORICAL = all ; IDVARIABLE = id ; ANALYSIS: ESTIMATOR = bayes ; OUTPUT: SAVEDATA: save=fscores(1 1) ; file=foc_bayes.dat ; MODEL: f by u1@1.01409 ; [u1$1@2.33686] ; f by u2@.97653 ; [u2$1@2.31682] ; f by u3@.96534 ; [u3$1@2.27431] ; f by u4@.98097 ; [u4$1@2.30823] ; f by u5@.90888 ; [u5$1@2.1895] ; f by u6@.97777 ; [u6$1@2.00644] ; f by u7@1.07641 ; [u7$1@2.11101] ; f by u8@.97867 ; [u8$1@2.03322] ; f by u9@1.0626 ; [u9$1@2.07416] ; f by u10@.99782 ; [u10$1@1.97926] ; f@1 ; INPUT READING TERMINATED NORMALLY Variable List - u1 : u2 : u3 : u4 : u5 : u6 : u7 : u8 : u9 : u10 : id : SUMMARY OF ANALYSIS Number of groups 1 Number of observations 5001 Number of dependent variables 10 Number of independent variables 0 Number of continuous latent variables 1 Observed dependent variables Binary and ordered categorical (ordinal) U1 U2 U3 U4 U5 U6 U7 U8 U9 U10 Continuous latent variables F Variables with special functions ID variable ID Estimator BAYES Specifications for Bayesian Estimation Point estimate MEDIAN Number of Markov chain Monte Carlo (MCMC) chains 2 Random seed for the first chain 0 Starting value information UNPERTURBED Algorithm used for Markov chain Monte Carlo GIBBS(PX1) Convergence criterion 0.500D-01 Maximum number of iterations 50000 K-th iteration used for thinning 1 Link PROBIT Specifications for Bayes Factor Score Estimation Number of imputed data sets 1 Iteration intervals for thinning 1 Input data file(s) __000001.dat Input data format FREE SUMMARY OF DATA SUMMARY OF MISSING DATA PATTERNS Number of missing data patterns 1 MISSING DATA PATTERNS (x = not missing) 1 U1 x U2 x U3 x U4 x U5 x U6 x U7 x U8 x U9 x U10 x MISSING DATA PATTERN FREQUENCIES Pattern Frequency 1 5001 COVARIANCE COVERAGE OF DATA Minimum covariance coverage value 0.100 PROPORTION OF DATA PRESENT Covariance Coverage U1 U2 U3 U4 U5 ________ ________ ________ ________ ________ U1 1.000 U2 1.000 1.000 U3 1.000 1.000 1.000 U4 1.000 1.000 1.000 1.000 U5 1.000 1.000 1.000 1.000 1.000 U6 1.000 1.000 1.000 1.000 1.000 U7 1.000 1.000 1.000 1.000 1.000 U8 1.000 1.000 1.000 1.000 1.000 U9 1.000 1.000 1.000 1.000 1.000 U10 1.000 1.000 1.000 1.000 1.000 Covariance Coverage U6 U7 U8 U9 U10 ________ ________ ________ ________ ________ U6 1.000 U7 1.000 1.000 U8 1.000 1.000 1.000 U9 1.000 1.000 1.000 1.000 U10 1.000 1.000 1.000 1.000 1.000 UNIVARIATE PROPORTIONS AND COUNTS FOR CATEGORICAL VARIABLES U1 Category 1 0.949 4745.000 Category 2 0.051 256.000 U2 Category 1 0.948 4741.000 Category 2 0.052 260.000 U3 Category 1 0.949 4748.000 Category 2 0.051 253.000 U4 Category 1 0.952 4761.000 Category 2 0.048 240.000 U5 Category 1 0.946 4729.000 Category 2 0.054 272.000 U6 Category 1 0.920 4601.000 Category 2 0.080 400.000 U7 Category 1 0.921 4606.000 Category 2 0.079 395.000 U8 Category 1 0.924 4622.000 Category 2 0.076 379.000 U9 Category 1 0.918 4593.000 Category 2 0.082 408.000 U10 Category 1 0.917 4587.000 Category 2 0.083 414.000 THE MODEL ESTIMATION TERMINATED NORMALLY USE THE FBITERATIONS OPTION TO INCREASE THE NUMBER OF ITERATIONS BY A FACTOR OF AT LEAST TWO TO CHECK CONVERGENCE AND THAT THE PSR VALUE DOES NOT INCREASE. MODEL FIT INFORMATION Number of Free Parameters 0 Bayesian Posterior Predictive Checking using Chi-Square 95% Confidence Interval for the Difference Between the Observed and the Replicated Chi-Square Values -31.736 14.981 Posterior Predictive P-Value 0.667 MODEL RESULTS Posterior One-Tailed 95% C.I. Estimate S.D. P-Value Lower 2.5% Upper 2.5% Significance F BY U1 1.014 0.000 0.000 1.014 1.014 U2 0.977 0.000 0.000 0.977 0.977 U3 0.965 0.000 0.000 0.965 0.965 U4 0.981 0.000 0.000 0.981 0.981 U5 0.909 0.000 0.000 0.909 0.909 U6 0.978 0.000 0.000 0.978 0.978 U7 1.076 0.000 0.000 1.076 1.076 U8 0.979 0.000 0.000 0.979 0.979 U9 1.063 0.000 0.000 1.063 1.063 U10 0.998 0.000 0.000 0.998 0.998 Thresholds U1$1 2.337 0.000 0.000 2.337 2.337 U2$1 2.317 0.000 0.000 2.317 2.317 U3$1 2.274 0.000 0.000 2.274 2.274 U4$1 2.308 0.000 0.000 2.308 2.308 U5$1 2.190 0.000 0.000 2.190 2.190 U6$1 2.006 0.000 0.000 2.006 2.006 U7$1 2.111 0.000 0.000 2.111 2.111 U8$1 2.033 0.000 0.000 2.033 2.033 U9$1 2.074 0.000 0.000 2.074 2.074 U10$1 1.979 0.000 0.000 1.979 1.979 Variances F 1.000 0.000 0.000 1.000 1.000 TECHNICAL 1 OUTPUT PARAMETER SPECIFICATION TAU U1$1 U2$1 U3$1 U4$1 U5$1 ________ ________ ________ ________ ________ 0 0 0 0 0 TAU U6$1 U7$1 U8$1 U9$1 U10$1 ________ ________ ________ ________ ________ 0 0 0 0 0 NU U1 U2 U3 U4 U5 ________ ________ ________ ________ ________ 0 0 0 0 0 NU U6 U7 U8 U9 U10 ________ ________ ________ ________ ________ 0 0 0 0 0 LAMBDA F ________ U1 0 U2 0 U3 0 U4 0 U5 0 U6 0 U7 0 U8 0 U9 0 U10 0 THETA U1 U2 U3 U4 U5 ________ ________ ________ ________ ________ U1 0 U2 0 0 U3 0 0 0 U4 0 0 0 0 U5 0 0 0 0 0 U6 0 0 0 0 0 U7 0 0 0 0 0 U8 0 0 0 0 0 U9 0 0 0 0 0 U10 0 0 0 0 0 THETA U6 U7 U8 U9 U10 ________ ________ ________ ________ ________ U6 0 U7 0 0 U8 0 0 0 U9 0 0 0 0 U10 0 0 0 0 0 ALPHA F ________ 0 BETA F ________ F 0 PSI F ________ F 0 STARTING VALUES TAU U1$1 U2$1 U3$1 U4$1 U5$1 ________ ________ ________ ________ ________ 2.337 2.317 2.274 2.308 2.190 TAU U6$1 U7$1 U8$1 U9$1 U10$1 ________ ________ ________ ________ ________ 2.006 2.111 2.033 2.074 1.979 NU U1 U2 U3 U4 U5 ________ ________ ________ ________ ________ 0.000 0.000 0.000 0.000 0.000 NU U6 U7 U8 U9 U10 ________ ________ ________ ________ ________ 0.000 0.000 0.000 0.000 0.000 LAMBDA F ________ U1 1.014 U2 0.977 U3 0.965 U4 0.981 U5 0.909 U6 0.978 U7 1.076 U8 0.979 U9 1.063 U10 0.998 THETA U1 U2 U3 U4 U5 ________ ________ ________ ________ ________ U1 1.000 U2 0.000 1.000 U3 0.000 0.000 1.000 U4 0.000 0.000 0.000 1.000 U5 0.000 0.000 0.000 0.000 1.000 U6 0.000 0.000 0.000 0.000 0.000 U7 0.000 0.000 0.000 0.000 0.000 U8 0.000 0.000 0.000 0.000 0.000 U9 0.000 0.000 0.000 0.000 0.000 U10 0.000 0.000 0.000 0.000 0.000 THETA U6 U7 U8 U9 U10 ________ ________ ________ ________ ________ U6 1.000 U7 0.000 1.000 U8 0.000 0.000 1.000 U9 0.000 0.000 0.000 1.000 U10 0.000 0.000 0.000 0.000 1.000 ALPHA F ________ 0.000 BETA F ________ F 0.000 PSI F ________ F 1.000 PRIORS FOR ALL PARAMETERS PRIOR MEAN PRIOR VARIANCE PRIOR STD. DEV. SUMMARIES OF PLAUSIBLE VALUES (N = NUMBER OF OBSERVATIONS * NUMBER OF IMPUTATIONS) SAMPLE STATISTICS Means F ________ -0.011 Covariances F ________ F 1.054 Correlations F ________ F 1.000 SUMMARY OF PLAUSIBLE STANDARD DEVIATION (N = NUMBER OF OBSERVATIONS) SAMPLE STATISTICS Means F_SD ________ 0.000 Covariances F_SD ________ F_SD 0.000 Correlations F_SD ________ F_SD 1.000 SAVEDATA INFORMATION Save file foc_bayes.dat Order and format of variables U1 F10.3 U2 F10.3 U3 F10.3 U4 F10.3 U5 F10.3 U6 F10.3 U7 F10.3 U8 F10.3 U9 F10.3 U10 F10.3 F Mean F10.3 F Median F10.3 F Standard Deviation F10.3 F 2.5% Value F10.3 F 97.5% Value F10.3 ID I6 Save file format 15F10.3 I6 Save file record length 10000 Save missing symbol * Beginning Time: 13:11:40 Ending Time: 13:11:41 Elapsed Time: 00:00:01 MUTHEN & MUTHEN 3463 Stoner Ave. Los Angeles, CA 90066 Tel: (310) 391-9971 Fax: (310) 391-8971 Web: www.StatModel.com Support: Support@StatModel.com Copyright (c) 1998-2021 Muthen & Muthen . clear . runmplus_load_savedata , out(hoo.out) . rename f_mean f_est_bayes . keep id f_est_bayes . tempfile focal_bayes . save `focal_bayes' , replace (note: file /var/folders/lq/w3m6z0dj41ngkbbc0204xb7m0000gp/T//S_03002.000008 not found) file /var/folders/lq/w3m6z0dj41ngkbbc0204xb7m0000gp/T//S_03002.000008 saved
Reference group
. local model "" . use `f1' , clear . keep if focal~=1 (5,001 observations deleted) . forvalues i=1/30 { 2. local l`i' = svalues[`i',1] 3. local t=`i'+30 4. local t`i' = svalues[`t',1] 5. local model "`model' f by u`i'@`l`i'' ;" 6. local model "`model' [u`i'$1@`t`i''] ;" 7. } . runmplus u1-u30 , cat(all) idvariable(id) /// > estimator(bayes) /// > model(`model' f@1;) /// > savedata(save=fscores(1 1); file=ref_bayes.dat;) /// > savelog(ioo) Mplus VERSION 8.6 (Mac) MUTHEN & MUTHEN Running input file '__000001.inp'... TECHNICAL 8 OUTPUT FOR BAYES ESTIMATION POTENTIAL PARAMETER WITH TOTAL ITERATION SCALE REDUCTION HIGHEST PSR TIME TIME 100 1.000 0 3.20 3.2 DUE TO SAVE=FSCORES REQUEST IN THE SAVEDATA COMMAND, FACTOR SCORES (PLAUSIBLE VALUES) ARE OBTAINED BY MULTIPLE IMPUTATIONS. THE NUMBER OF IMPUTATIONS CAN BE CHANGED WITH THE SAVE=FSCORES REQUEST. GENERATING IMPUTATION 1 WRITING FACTOR SCORES (PLAUSIBLE VALUES) TO SAVEDATA AND/OR PLOT FILE Beginning Time: 13:11:42 Ending Time: 13:11:46 Elapsed Time: 00:00:04 Output saved in '__000001.out'. Mplus VERSION 8.6 (Mac) MUTHEN & MUTHEN 08/20/2021 1:11 PM INPUT INSTRUCTIONS TITLE: Variable List - u1 : u2 : u3 : u4 : u5 : u6 : u7 : u8 : u9 : u10 : u11 : u12 : u13 : u14 : u15 : u16 : u17 : u18 : u19 : u20 : u21 : u22 : u23 : u24 : u25 : u26 : u27 : u28 : u29 : u30 : id : DATA: FILE = __000001.dat ; VARIABLE: NAMES = u1 u2 u3 u4 u5 u6 u7 u8 u9 u10 u11 u12 u13 u14 u15 u16 u17 u18 u19 u20 u21 u22 u23 u24 u25 u26 u27 u28 u29 u30 id ; MISSING ARE ALL (-9999) ; CATEGORICAL = all ; IDVARIABLE = id ; ANALYSIS: ESTIMATOR = bayes ; OUTPUT: SAVEDATA: save=fscores(1 1) ; file=ref_bayes.dat ; MODEL: f by u1@1.01409 ; [u1$1@2.33686] ; f by u2@.97653 ; [u2$1@2.31682] ; f by u3@.96534 ; [u3$1@2.27431] ; f by u4@.98097 ; [u4$1@2.30823] ; f by u5@.90888 ; [u5$1@2.1895] ; f by u6@.97777 ; [u6$1@2.00644] ; f by u7@1.07641 ; [u7$1@2.11101] ; f by u8@.97867 ; [u8$1@2.03322] ; f by u9@1.0626 ; [u9$1@2.07416] ; f by u10@.99782 ; [u10$1@1.97926] ; f by u11@1.01746 ; [u11$1@1.80978] ; f by u12@1.04867 ; [u12$1@1.82851] ; f by u13@1.02499 ; [u13$1@1.80543] ; f by u14@.95264 ; [u14$1@1.77559] ; f by u15@.95452 ; [u15$1@1.77015] ; f by u16@1.00153 ; [u16$1@1.18424] ; f by u17@.98187 ; [u17$1@1.20945] ; f by u18@1.00501 ; [u18$1@1.21787] ; f by u19@1.03146 ; [u19$1@1.19854] ; f by u20@.99537 ; [u20$1@1.16959] ; f by u21@.98347 ; [u21$1@.38352] ; f by u22@1.01198 ; [u22$1@.3879] ; f by u23@1.03699 ; [u23$1@.38417] ; f by u24@.99536 ; [u24$1@.32265] ; f by u25@.99005 ; [u25$1@.37819] ; f by u26@1.0051 ; [u26$1@-.00302] ; f by u27@1.00563 ; [u27$1@.01333] ; f by u28@1.03124 ; [u28$1@-.00702] ; f by u29@1.01361 ; [u29$1@-.01338] ; f by u30@1.06863 ; [u30$1@.00899] ; f@1 ; INPUT READING TERMINATED NORMALLY Variable List - u1 : u2 : u3 : u4 : u5 : u6 : u7 : u8 : u9 : u10 : u11 : u12 : u13 : u14 : u15 : u16 : u17 : u18 : u19 : u20 : u21 : u22 : u23 : u24 : u25 : u26 : u27 : u28 : u29 : u30 : id : SUMMARY OF ANALYSIS Number of groups 1 Number of observations 5000 Number of dependent variables 30 Number of independent variables 0 Number of continuous latent variables 1 Observed dependent variables Binary and ordered categorical (ordinal) U1 U2 U3 U4 U5 U6 U7 U8 U9 U10 U11 U12 U13 U14 U15 U16 U17 U18 U19 U20 U21 U22 U23 U24 U25 U26 U27 U28 U29 U30 Continuous latent variables F Variables with special functions ID variable ID Estimator BAYES Specifications for Bayesian Estimation Point estimate MEDIAN Number of Markov chain Monte Carlo (MCMC) chains 2 Random seed for the first chain 0 Starting value information UNPERTURBED Algorithm used for Markov chain Monte Carlo GIBBS(PX1) Convergence criterion 0.500D-01 Maximum number of iterations 50000 K-th iteration used for thinning 1 Link PROBIT Specifications for Bayes Factor Score Estimation Number of imputed data sets 1 Iteration intervals for thinning 1 Input data file(s) __000001.dat Input data format FREE SUMMARY OF DATA SUMMARY OF MISSING DATA PATTERNS Number of missing data patterns 1 MISSING DATA PATTERNS (x = not missing) 1 U1 x U2 x U3 x U4 x U5 x U6 x U7 x U8 x U9 x U10 x U11 x U12 x U13 x U14 x U15 x U16 x U17 x U18 x U19 x U20 x U21 x U22 x U23 x U24 x U25 x U26 x U27 x U28 x U29 x U30 x MISSING DATA PATTERN FREQUENCIES Pattern Frequency 1 5000 COVARIANCE COVERAGE OF DATA Minimum covariance coverage value 0.100 PROPORTION OF DATA PRESENT Covariance Coverage U1 U2 U3 U4 U5 ________ ________ ________ ________ ________ U1 1.000 U2 1.000 1.000 U3 1.000 1.000 1.000 U4 1.000 1.000 1.000 1.000 U5 1.000 1.000 1.000 1.000 1.000 U6 1.000 1.000 1.000 1.000 1.000 U7 1.000 1.000 1.000 1.000 1.000 U8 1.000 1.000 1.000 1.000 1.000 U9 1.000 1.000 1.000 1.000 1.000 U10 1.000 1.000 1.000 1.000 1.000 U11 1.000 1.000 1.000 1.000 1.000 U12 1.000 1.000 1.000 1.000 1.000 U13 1.000 1.000 1.000 1.000 1.000 U14 1.000 1.000 1.000 1.000 1.000 U15 1.000 1.000 1.000 1.000 1.000 U16 1.000 1.000 1.000 1.000 1.000 U17 1.000 1.000 1.000 1.000 1.000 U18 1.000 1.000 1.000 1.000 1.000 U19 1.000 1.000 1.000 1.000 1.000 U20 1.000 1.000 1.000 1.000 1.000 U21 1.000 1.000 1.000 1.000 1.000 U22 1.000 1.000 1.000 1.000 1.000 U23 1.000 1.000 1.000 1.000 1.000 U24 1.000 1.000 1.000 1.000 1.000 U25 1.000 1.000 1.000 1.000 1.000 U26 1.000 1.000 1.000 1.000 1.000 U27 1.000 1.000 1.000 1.000 1.000 U28 1.000 1.000 1.000 1.000 1.000 U29 1.000 1.000 1.000 1.000 1.000 U30 1.000 1.000 1.000 1.000 1.000 Covariance Coverage U6 U7 U8 U9 U10 ________ ________ ________ ________ ________ U6 1.000 U7 1.000 1.000 U8 1.000 1.000 1.000 U9 1.000 1.000 1.000 1.000 U10 1.000 1.000 1.000 1.000 1.000 U11 1.000 1.000 1.000 1.000 1.000 U12 1.000 1.000 1.000 1.000 1.000 U13 1.000 1.000 1.000 1.000 1.000 U14 1.000 1.000 1.000 1.000 1.000 U15 1.000 1.000 1.000 1.000 1.000 U16 1.000 1.000 1.000 1.000 1.000 U17 1.000 1.000 1.000 1.000 1.000 U18 1.000 1.000 1.000 1.000 1.000 U19 1.000 1.000 1.000 1.000 1.000 U20 1.000 1.000 1.000 1.000 1.000 U21 1.000 1.000 1.000 1.000 1.000 U22 1.000 1.000 1.000 1.000 1.000 U23 1.000 1.000 1.000 1.000 1.000 U24 1.000 1.000 1.000 1.000 1.000 U25 1.000 1.000 1.000 1.000 1.000 U26 1.000 1.000 1.000 1.000 1.000 U27 1.000 1.000 1.000 1.000 1.000 U28 1.000 1.000 1.000 1.000 1.000 U29 1.000 1.000 1.000 1.000 1.000 U30 1.000 1.000 1.000 1.000 1.000 Covariance Coverage U11 U12 U13 U14 U15 ________ ________ ________ ________ ________ U11 1.000 U12 1.000 1.000 U13 1.000 1.000 1.000 U14 1.000 1.000 1.000 1.000 U15 1.000 1.000 1.000 1.000 1.000 U16 1.000 1.000 1.000 1.000 1.000 U17 1.000 1.000 1.000 1.000 1.000 U18 1.000 1.000 1.000 1.000 1.000 U19 1.000 1.000 1.000 1.000 1.000 U20 1.000 1.000 1.000 1.000 1.000 U21 1.000 1.000 1.000 1.000 1.000 U22 1.000 1.000 1.000 1.000 1.000 U23 1.000 1.000 1.000 1.000 1.000 U24 1.000 1.000 1.000 1.000 1.000 U25 1.000 1.000 1.000 1.000 1.000 U26 1.000 1.000 1.000 1.000 1.000 U27 1.000 1.000 1.000 1.000 1.000 U28 1.000 1.000 1.000 1.000 1.000 U29 1.000 1.000 1.000 1.000 1.000 U30 1.000 1.000 1.000 1.000 1.000 Covariance Coverage U16 U17 U18 U19 U20 ________ ________ ________ ________ ________ U16 1.000 U17 1.000 1.000 U18 1.000 1.000 1.000 U19 1.000 1.000 1.000 1.000 U20 1.000 1.000 1.000 1.000 1.000 U21 1.000 1.000 1.000 1.000 1.000 U22 1.000 1.000 1.000 1.000 1.000 U23 1.000 1.000 1.000 1.000 1.000 U24 1.000 1.000 1.000 1.000 1.000 U25 1.000 1.000 1.000 1.000 1.000 U26 1.000 1.000 1.000 1.000 1.000 U27 1.000 1.000 1.000 1.000 1.000 U28 1.000 1.000 1.000 1.000 1.000 U29 1.000 1.000 1.000 1.000 1.000 U30 1.000 1.000 1.000 1.000 1.000 Covariance Coverage U21 U22 U23 U24 U25 ________ ________ ________ ________ ________ U21 1.000 U22 1.000 1.000 U23 1.000 1.000 1.000 U24 1.000 1.000 1.000 1.000 U25 1.000 1.000 1.000 1.000 1.000 U26 1.000 1.000 1.000 1.000 1.000 U27 1.000 1.000 1.000 1.000 1.000 U28 1.000 1.000 1.000 1.000 1.000 U29 1.000 1.000 1.000 1.000 1.000 U30 1.000 1.000 1.000 1.000 1.000 Covariance Coverage U26 U27 U28 U29 U30 ________ ________ ________ ________ ________ U26 1.000 U27 1.000 1.000 U28 1.000 1.000 1.000 U29 1.000 1.000 1.000 1.000 U30 1.000 1.000 1.000 1.000 1.000 UNIVARIATE PROPORTIONS AND COUNTS FOR CATEGORICAL VARIABLES U1 Category 1 0.950 4752.000 Category 2 0.050 248.000 U2 Category 1 0.955 4773.000 Category 2 0.045 227.000 U3 Category 1 0.949 4744.000 Category 2 0.051 256.000 U4 Category 1 0.949 4743.000 Category 2 0.051 257.000 U5 Category 1 0.949 4746.000 Category 2 0.051 254.000 U6 Category 1 0.929 4643.000 Category 2 0.071 357.000 U7 Category 1 0.928 4641.000 Category 2 0.072 359.000 U8 Category 1 0.930 4648.000 Category 2 0.070 352.000 U9 Category 1 0.926 4632.000 Category 2 0.074 368.000 U10 Category 1 0.922 4608.000 Category 2 0.078 392.000 U11 Category 1 0.894 4468.000 Category 2 0.106 532.000 U12 Category 1 0.896 4478.000 Category 2 0.104 522.000 U13 Category 1 0.899 4496.000 Category 2 0.101 504.000 U14 Category 1 0.899 4495.000 Category 2 0.101 505.000 U15 Category 1 0.900 4499.000 Category 2 0.100 501.000 U16 Category 1 0.793 3967.000 Category 2 0.207 1033.000 U17 Category 1 0.803 4017.000 Category 2 0.197 983.000 U18 Category 1 0.805 4023.000 Category 2 0.195 977.000 U19 Category 1 0.801 4004.000 Category 2 0.199 996.000 U20 Category 1 0.795 3973.000 Category 2 0.205 1027.000 U21 Category 1 0.602 3011.000 Category 2 0.398 1989.000 U22 Category 1 0.605 3024.000 Category 2 0.395 1976.000 U23 Category 1 0.610 3052.000 Category 2 0.390 1948.000 U24 Category 1 0.593 2965.000 Category 2 0.407 2035.000 U25 Category 1 0.608 3040.000 Category 2 0.392 1960.000 U26 Category 1 0.506 2531.000 Category 2 0.494 2469.000 U27 Category 1 0.503 2515.000 Category 2 0.497 2485.000 U28 Category 1 0.499 2494.000 Category 2 0.501 2506.000 U29 Category 1 0.503 2517.000 Category 2 0.497 2483.000 U30 Category 1 0.506 2531.000 Category 2 0.494 2469.000 THE MODEL ESTIMATION TERMINATED NORMALLY USE THE FBITERATIONS OPTION TO INCREASE THE NUMBER OF ITERATIONS BY A FACTOR OF AT LEAST TWO TO CHECK CONVERGENCE AND THAT THE PSR VALUE DOES NOT INCREASE. MODEL FIT INFORMATION Number of Free Parameters 0 Bayesian Posterior Predictive Checking using Chi-Square 95% Confidence Interval for the Difference Between the Observed and the Replicated Chi-Square Values -71.585 94.774 Posterior Predictive P-Value 0.417 MODEL RESULTS Posterior One-Tailed 95% C.I. Estimate S.D. P-Value Lower 2.5% Upper 2.5% Significance F BY U1 1.014 0.000 0.000 1.014 1.014 U2 0.977 0.000 0.000 0.977 0.977 U3 0.965 0.000 0.000 0.965 0.965 U4 0.981 0.000 0.000 0.981 0.981 U5 0.909 0.000 0.000 0.909 0.909 U6 0.978 0.000 0.000 0.978 0.978 U7 1.076 0.000 0.000 1.076 1.076 U8 0.979 0.000 0.000 0.979 0.979 U9 1.063 0.000 0.000 1.063 1.063 U10 0.998 0.000 0.000 0.998 0.998 U11 1.017 0.000 0.000 1.017 1.017 U12 1.049 0.000 0.000 1.049 1.049 U13 1.025 0.000 0.000 1.025 1.025 U14 0.953 0.000 0.000 0.953 0.953 U15 0.955 0.000 0.000 0.955 0.955 U16 1.002 0.000 0.000 1.002 1.002 U17 0.982 0.000 0.000 0.982 0.982 U18 1.005 0.000 0.000 1.005 1.005 U19 1.031 0.000 0.000 1.031 1.031 U20 0.995 0.000 0.000 0.995 0.995 U21 0.983 0.000 0.000 0.983 0.983 U22 1.012 0.000 0.000 1.012 1.012 U23 1.037 0.000 0.000 1.037 1.037 U24 0.995 0.000 0.000 0.995 0.995 U25 0.990 0.000 0.000 0.990 0.990 U26 1.005 0.000 0.000 1.005 1.005 U27 1.006 0.000 0.000 1.006 1.006 U28 1.031 0.000 0.000 1.031 1.031 U29 1.014 0.000 0.000 1.014 1.014 U30 1.069 0.000 0.000 1.069 1.069 Thresholds U1$1 2.337 0.000 0.000 2.337 2.337 U2$1 2.317 0.000 0.000 2.317 2.317 U3$1 2.274 0.000 0.000 2.274 2.274 U4$1 2.308 0.000 0.000 2.308 2.308 U5$1 2.190 0.000 0.000 2.190 2.190 U6$1 2.006 0.000 0.000 2.006 2.006 U7$1 2.111 0.000 0.000 2.111 2.111 U8$1 2.033 0.000 0.000 2.033 2.033 U9$1 2.074 0.000 0.000 2.074 2.074 U10$1 1.979 0.000 0.000 1.979 1.979 U11$1 1.810 0.000 0.000 1.810 1.810 U12$1 1.829 0.000 0.000 1.829 1.829 U13$1 1.805 0.000 0.000 1.805 1.805 U14$1 1.776 0.000 0.000 1.776 1.776 U15$1 1.770 0.000 0.000 1.770 1.770 U16$1 1.184 0.000 0.000 1.184 1.184 U17$1 1.209 0.000 0.000 1.209 1.209 U18$1 1.218 0.000 0.000 1.218 1.218 U19$1 1.199 0.000 0.000 1.199 1.199 U20$1 1.170 0.000 0.000 1.170 1.170 U21$1 0.384 0.000 0.000 0.384 0.384 U22$1 0.388 0.000 0.000 0.388 0.388 U23$1 0.384 0.000 0.000 0.384 0.384 U24$1 0.323 0.000 0.000 0.323 0.323 U25$1 0.378 0.000 0.000 0.378 0.378 U26$1 -0.003 0.000 0.000 -0.003 -0.003 U27$1 0.013 0.000 0.000 0.013 0.013 U28$1 -0.007 0.000 0.000 -0.007 -0.007 U29$1 -0.013 0.000 0.000 -0.013 -0.013 U30$1 0.009 0.000 0.000 0.009 0.009 Variances F 1.000 0.000 0.000 1.000 1.000 TECHNICAL 1 OUTPUT PARAMETER SPECIFICATION TAU U1$1 U2$1 U3$1 U4$1 U5$1 ________ ________ ________ ________ ________ 0 0 0 0 0 TAU U6$1 U7$1 U8$1 U9$1 U10$1 ________ ________ ________ ________ ________ 0 0 0 0 0 TAU U11$1 U12$1 U13$1 U14$1 U15$1 ________ ________ ________ ________ ________ 0 0 0 0 0 TAU U16$1 U17$1 U18$1 U19$1 U20$1 ________ ________ ________ ________ ________ 0 0 0 0 0 TAU U21$1 U22$1 U23$1 U24$1 U25$1 ________ ________ ________ ________ ________ 0 0 0 0 0 TAU U26$1 U27$1 U28$1 U29$1 U30$1 ________ ________ ________ ________ ________ 0 0 0 0 0 NU U1 U2 U3 U4 U5 ________ ________ ________ ________ ________ 0 0 0 0 0 NU U6 U7 U8 U9 U10 ________ ________ ________ ________ ________ 0 0 0 0 0 NU U11 U12 U13 U14 U15 ________ ________ ________ ________ ________ 0 0 0 0 0 NU U16 U17 U18 U19 U20 ________ ________ ________ ________ ________ 0 0 0 0 0 NU U21 U22 U23 U24 U25 ________ ________ ________ ________ ________ 0 0 0 0 0 NU U26 U27 U28 U29 U30 ________ ________ ________ ________ ________ 0 0 0 0 0 LAMBDA F ________ U1 0 U2 0 U3 0 U4 0 U5 0 U6 0 U7 0 U8 0 U9 0 U10 0 U11 0 U12 0 U13 0 U14 0 U15 0 U16 0 U17 0 U18 0 U19 0 U20 0 U21 0 U22 0 U23 0 U24 0 U25 0 U26 0 U27 0 U28 0 U29 0 U30 0 THETA U1 U2 U3 U4 U5 ________ ________ ________ ________ ________ U1 0 U2 0 0 U3 0 0 0 U4 0 0 0 0 U5 0 0 0 0 0 U6 0 0 0 0 0 U7 0 0 0 0 0 U8 0 0 0 0 0 U9 0 0 0 0 0 U10 0 0 0 0 0 U11 0 0 0 0 0 U12 0 0 0 0 0 U13 0 0 0 0 0 U14 0 0 0 0 0 U15 0 0 0 0 0 U16 0 0 0 0 0 U17 0 0 0 0 0 U18 0 0 0 0 0 U19 0 0 0 0 0 U20 0 0 0 0 0 U21 0 0 0 0 0 U22 0 0 0 0 0 U23 0 0 0 0 0 U24 0 0 0 0 0 U25 0 0 0 0 0 U26 0 0 0 0 0 U27 0 0 0 0 0 U28 0 0 0 0 0 U29 0 0 0 0 0 U30 0 0 0 0 0 THETA U6 U7 U8 U9 U10 ________ ________ ________ ________ ________ U6 0 U7 0 0 U8 0 0 0 U9 0 0 0 0 U10 0 0 0 0 0 U11 0 0 0 0 0 U12 0 0 0 0 0 U13 0 0 0 0 0 U14 0 0 0 0 0 U15 0 0 0 0 0 U16 0 0 0 0 0 U17 0 0 0 0 0 U18 0 0 0 0 0 U19 0 0 0 0 0 U20 0 0 0 0 0 U21 0 0 0 0 0 U22 0 0 0 0 0 U23 0 0 0 0 0 U24 0 0 0 0 0 U25 0 0 0 0 0 U26 0 0 0 0 0 U27 0 0 0 0 0 U28 0 0 0 0 0 U29 0 0 0 0 0 U30 0 0 0 0 0 THETA U11 U12 U13 U14 U15 ________ ________ ________ ________ ________ U11 0 U12 0 0 U13 0 0 0 U14 0 0 0 0 U15 0 0 0 0 0 U16 0 0 0 0 0 U17 0 0 0 0 0 U18 0 0 0 0 0 U19 0 0 0 0 0 U20 0 0 0 0 0 U21 0 0 0 0 0 U22 0 0 0 0 0 U23 0 0 0 0 0 U24 0 0 0 0 0 U25 0 0 0 0 0 U26 0 0 0 0 0 U27 0 0 0 0 0 U28 0 0 0 0 0 U29 0 0 0 0 0 U30 0 0 0 0 0 THETA U16 U17 U18 U19 U20 ________ ________ ________ ________ ________ U16 0 U17 0 0 U18 0 0 0 U19 0 0 0 0 U20 0 0 0 0 0 U21 0 0 0 0 0 U22 0 0 0 0 0 U23 0 0 0 0 0 U24 0 0 0 0 0 U25 0 0 0 0 0 U26 0 0 0 0 0 U27 0 0 0 0 0 U28 0 0 0 0 0 U29 0 0 0 0 0 U30 0 0 0 0 0 THETA U21 U22 U23 U24 U25 ________ ________ ________ ________ ________ U21 0 U22 0 0 U23 0 0 0 U24 0 0 0 0 U25 0 0 0 0 0 U26 0 0 0 0 0 U27 0 0 0 0 0 U28 0 0 0 0 0 U29 0 0 0 0 0 U30 0 0 0 0 0 THETA U26 U27 U28 U29 U30 ________ ________ ________ ________ ________ U26 0 U27 0 0 U28 0 0 0 U29 0 0 0 0 U30 0 0 0 0 0 ALPHA F ________ 0 BETA F ________ F 0 PSI F ________ F 0 STARTING VALUES TAU U1$1 U2$1 U3$1 U4$1 U5$1 ________ ________ ________ ________ ________ 2.337 2.317 2.274 2.308 2.190 TAU U6$1 U7$1 U8$1 U9$1 U10$1 ________ ________ ________ ________ ________ 2.006 2.111 2.033 2.074 1.979 TAU U11$1 U12$1 U13$1 U14$1 U15$1 ________ ________ ________ ________ ________ 1.810 1.829 1.805 1.776 1.770 TAU U16$1 U17$1 U18$1 U19$1 U20$1 ________ ________ ________ ________ ________ 1.184 1.209 1.218 1.199 1.170 TAU U21$1 U22$1 U23$1 U24$1 U25$1 ________ ________ ________ ________ ________ 0.384 0.388 0.384 0.323 0.378 TAU U26$1 U27$1 U28$1 U29$1 U30$1 ________ ________ ________ ________ ________ -0.003 0.013 -0.007 -0.013 0.009 NU U1 U2 U3 U4 U5 ________ ________ ________ ________ ________ 0.000 0.000 0.000 0.000 0.000 NU U6 U7 U8 U9 U10 ________ ________ ________ ________ ________ 0.000 0.000 0.000 0.000 0.000 NU U11 U12 U13 U14 U15 ________ ________ ________ ________ ________ 0.000 0.000 0.000 0.000 0.000 NU U16 U17 U18 U19 U20 ________ ________ ________ ________ ________ 0.000 0.000 0.000 0.000 0.000 NU U21 U22 U23 U24 U25 ________ ________ ________ ________ ________ 0.000 0.000 0.000 0.000 0.000 NU U26 U27 U28 U29 U30 ________ ________ ________ ________ ________ 0.000 0.000 0.000 0.000 0.000 LAMBDA F ________ U1 1.014 U2 0.977 U3 0.965 U4 0.981 U5 0.909 U6 0.978 U7 1.076 U8 0.979 U9 1.063 U10 0.998 U11 1.017 U12 1.049 U13 1.025 U14 0.953 U15 0.955 U16 1.002 U17 0.982 U18 1.005 U19 1.031 U20 0.995 U21 0.983 U22 1.012 U23 1.037 U24 0.995 U25 0.990 U26 1.005 U27 1.006 U28 1.031 U29 1.014 U30 1.069 THETA U1 U2 U3 U4 U5 ________ ________ ________ ________ ________ U1 1.000 U2 0.000 1.000 U3 0.000 0.000 1.000 U4 0.000 0.000 0.000 1.000 U5 0.000 0.000 0.000 0.000 1.000 U6 0.000 0.000 0.000 0.000 0.000 U7 0.000 0.000 0.000 0.000 0.000 U8 0.000 0.000 0.000 0.000 0.000 U9 0.000 0.000 0.000 0.000 0.000 U10 0.000 0.000 0.000 0.000 0.000 U11 0.000 0.000 0.000 0.000 0.000 U12 0.000 0.000 0.000 0.000 0.000 U13 0.000 0.000 0.000 0.000 0.000 U14 0.000 0.000 0.000 0.000 0.000 U15 0.000 0.000 0.000 0.000 0.000 U16 0.000 0.000 0.000 0.000 0.000 U17 0.000 0.000 0.000 0.000 0.000 U18 0.000 0.000 0.000 0.000 0.000 U19 0.000 0.000 0.000 0.000 0.000 U20 0.000 0.000 0.000 0.000 0.000 U21 0.000 0.000 0.000 0.000 0.000 U22 0.000 0.000 0.000 0.000 0.000 U23 0.000 0.000 0.000 0.000 0.000 U24 0.000 0.000 0.000 0.000 0.000 U25 0.000 0.000 0.000 0.000 0.000 U26 0.000 0.000 0.000 0.000 0.000 U27 0.000 0.000 0.000 0.000 0.000 U28 0.000 0.000 0.000 0.000 0.000 U29 0.000 0.000 0.000 0.000 0.000 U30 0.000 0.000 0.000 0.000 0.000 THETA U6 U7 U8 U9 U10 ________ ________ ________ ________ ________ U6 1.000 U7 0.000 1.000 U8 0.000 0.000 1.000 U9 0.000 0.000 0.000 1.000 U10 0.000 0.000 0.000 0.000 1.000 U11 0.000 0.000 0.000 0.000 0.000 U12 0.000 0.000 0.000 0.000 0.000 U13 0.000 0.000 0.000 0.000 0.000 U14 0.000 0.000 0.000 0.000 0.000 U15 0.000 0.000 0.000 0.000 0.000 U16 0.000 0.000 0.000 0.000 0.000 U17 0.000 0.000 0.000 0.000 0.000 U18 0.000 0.000 0.000 0.000 0.000 U19 0.000 0.000 0.000 0.000 0.000 U20 0.000 0.000 0.000 0.000 0.000 U21 0.000 0.000 0.000 0.000 0.000 U22 0.000 0.000 0.000 0.000 0.000 U23 0.000 0.000 0.000 0.000 0.000 U24 0.000 0.000 0.000 0.000 0.000 U25 0.000 0.000 0.000 0.000 0.000 U26 0.000 0.000 0.000 0.000 0.000 U27 0.000 0.000 0.000 0.000 0.000 U28 0.000 0.000 0.000 0.000 0.000 U29 0.000 0.000 0.000 0.000 0.000 U30 0.000 0.000 0.000 0.000 0.000 THETA U11 U12 U13 U14 U15 ________ ________ ________ ________ ________ U11 1.000 U12 0.000 1.000 U13 0.000 0.000 1.000 U14 0.000 0.000 0.000 1.000 U15 0.000 0.000 0.000 0.000 1.000 U16 0.000 0.000 0.000 0.000 0.000 U17 0.000 0.000 0.000 0.000 0.000 U18 0.000 0.000 0.000 0.000 0.000 U19 0.000 0.000 0.000 0.000 0.000 U20 0.000 0.000 0.000 0.000 0.000 U21 0.000 0.000 0.000 0.000 0.000 U22 0.000 0.000 0.000 0.000 0.000 U23 0.000 0.000 0.000 0.000 0.000 U24 0.000 0.000 0.000 0.000 0.000 U25 0.000 0.000 0.000 0.000 0.000 U26 0.000 0.000 0.000 0.000 0.000 U27 0.000 0.000 0.000 0.000 0.000 U28 0.000 0.000 0.000 0.000 0.000 U29 0.000 0.000 0.000 0.000 0.000 U30 0.000 0.000 0.000 0.000 0.000 THETA U16 U17 U18 U19 U20 ________ ________ ________ ________ ________ U16 1.000 U17 0.000 1.000 U18 0.000 0.000 1.000 U19 0.000 0.000 0.000 1.000 U20 0.000 0.000 0.000 0.000 1.000 U21 0.000 0.000 0.000 0.000 0.000 U22 0.000 0.000 0.000 0.000 0.000 U23 0.000 0.000 0.000 0.000 0.000 U24 0.000 0.000 0.000 0.000 0.000 U25 0.000 0.000 0.000 0.000 0.000 U26 0.000 0.000 0.000 0.000 0.000 U27 0.000 0.000 0.000 0.000 0.000 U28 0.000 0.000 0.000 0.000 0.000 U29 0.000 0.000 0.000 0.000 0.000 U30 0.000 0.000 0.000 0.000 0.000 THETA U21 U22 U23 U24 U25 ________ ________ ________ ________ ________ U21 1.000 U22 0.000 1.000 U23 0.000 0.000 1.000 U24 0.000 0.000 0.000 1.000 U25 0.000 0.000 0.000 0.000 1.000 U26 0.000 0.000 0.000 0.000 0.000 U27 0.000 0.000 0.000 0.000 0.000 U28 0.000 0.000 0.000 0.000 0.000 U29 0.000 0.000 0.000 0.000 0.000 U30 0.000 0.000 0.000 0.000 0.000 THETA U26 U27 U28 U29 U30 ________ ________ ________ ________ ________ U26 1.000 U27 0.000 1.000 U28 0.000 0.000 1.000 U29 0.000 0.000 0.000 1.000 U30 0.000 0.000 0.000 0.000 1.000 ALPHA F ________ 0.000 BETA F ________ F 0.000 PSI F ________ F 1.000 PRIORS FOR ALL PARAMETERS PRIOR MEAN PRIOR VARIANCE PRIOR STD. DEV. SUMMARIES OF PLAUSIBLE VALUES (N = NUMBER OF OBSERVATIONS * NUMBER OF IMPUTATIONS) SAMPLE STATISTICS Means F ________ -0.017 Covariances F ________ F 1.024 Correlations F ________ F 1.000 SUMMARY OF PLAUSIBLE STANDARD DEVIATION (N = NUMBER OF OBSERVATIONS) SAMPLE STATISTICS Means F_SD ________ 0.000 Covariances F_SD ________ F_SD 0.000 Correlations F_SD ________ F_SD 1.000 SAVEDATA INFORMATION Save file ref_bayes.dat Order and format of variables U1 F10.3 U2 F10.3 U3 F10.3 U4 F10.3 U5 F10.3 U6 F10.3 U7 F10.3 U8 F10.3 U9 F10.3 U10 F10.3 U11 F10.3 U12 F10.3 U13 F10.3 U14 F10.3 U15 F10.3 U16 F10.3 U17 F10.3 U18 F10.3 U19 F10.3 U20 F10.3 U21 F10.3 U22 F10.3 U23 F10.3 U24 F10.3 U25 F10.3 U26 F10.3 U27 F10.3 U28 F10.3 U29 F10.3 U30 F10.3 F Mean F10.3 F Median F10.3 F Standard Deviation F10.3 F 2.5% Value F10.3 F 97.5% Value F10.3 ID I5 Save file format 35F10.3 I5 Save file record length 10000 Save missing symbol * Beginning Time: 13:11:42 Ending Time: 13:11:46 Elapsed Time: 00:00:04 MUTHEN & MUTHEN 3463 Stoner Ave. Los Angeles, CA 90066 Tel: (310) 391-9971 Fax: (310) 391-8971 Web: www.StatModel.com Support: Support@StatModel.com Copyright (c) 1998-2021 Muthen & Muthen . clear . runmplus_load_savedata , out(ioo.out) . rename f_mean f_est_bayes . keep id f_est_bayes . tempfile reference_bayes . save `reference_bayes' , replace (note: file /var/folders/lq/w3m6z0dj41ngkbbc0204xb7m0000gp/T//S_03002.000009 not found) file /var/folders/lq/w3m6z0dj41ngkbbc0204xb7m0000gp/T//S_03002.000009 saved
Merge files
. use `focal_bayes' , clear . append using `reference_bayes' . merge 1:1 id using `f2' , nogen (note: variable id was int, now float to accommodate using data's values) Result # of obs. ───────────────────────────────────────── not matched 0 matched 10,001 ─────────────────────────────────────────
Pyramid plot of Bayes factor score estimates, by group
(file /Users/rnj/Dropbox/Work/Syntax/pyramid_bayes.png written in PNG format)
DIF testing with regression approach
. forvalues i=1/10 { 2. logit u`i' i.focal##c.f_est_bayes 3. } Iteration 0: log likelihood = -1996.9651 Iteration 1: log likelihood = -1618.5238 Iteration 2: log likelihood = -1385.8062 Iteration 3: log likelihood = -1376.8779 Iteration 4: log likelihood = -1376.8367 Iteration 5: log likelihood = -1376.8367 Logistic regression Number of obs = 10,001 LR chi2(3) = 1240.26 Prob > chi2 = 0.0000 Log likelihood = -1376.8367 Pseudo R2 = 0.3105 ────────────────────┬──────────────────────────────────────────────────────────────── u1 │ Coef. Std. Err. z P>|z| [95% Conf. Interval] ────────────────────┼──────────────────────────────────────────────────────────────── 1.focal │ -.0880271 .2023997 -0.43 0.664 -.4847234 .3086691 f_est_bayes │ 1.918393 .0990831 19.36 0.000 1.724194 2.112592 │ focal#c.f_est_bayes │ 1 │ .0645699 .1404867 0.46 0.646 -.2107789 .3399188 │ _cons │ -4.324077 .1413382 -30.59 0.000 -4.601095 -4.04706 ────────────────────┴──────────────────────────────────────────────────────────────── Iteration 0: log likelihood = -1946.7453 Iteration 1: log likelihood = -1588.4771 Iteration 2: log likelihood = -1356.071 Iteration 3: log likelihood = -1347.0241 Iteration 4: log likelihood = -1346.9788 Iteration 5: log likelihood = -1346.9788 Logistic regression Number of obs = 10,001 LR chi2(3) = 1199.53 Prob > chi2 = 0.0000 Log likelihood = -1346.9788 Pseudo R2 = 0.3081 ────────────────────┬──────────────────────────────────────────────────────────────── u2 │ Coef. Std. Err. z P>|z| [95% Conf. Interval] ────────────────────┼──────────────────────────────────────────────────────────────── 1.focal │ .2445174 .2063609 1.18 0.236 -.1599425 .6489774 f_est_bayes │ 1.98933 .1052249 18.91 0.000 1.783093 2.195567 │ focal#c.f_est_bayes │ 1 │ -.0923086 .1422146 -0.65 0.516 -.3710442 .186427 │ _cons │ -4.52888 .1537272 -29.46 0.000 -4.83018 -4.227581 ────────────────────┴──────────────────────────────────────────────────────────────── Iteration 0: log likelihood = -2011.6198 Iteration 1: log likelihood = -1628.2482 Iteration 2: log likelihood = -1396.5351 Iteration 3: log likelihood = -1387.6987 Iteration 4: log likelihood = -1387.6569 Iteration 5: log likelihood = -1387.6569 Logistic regression Number of obs = 10,001 LR chi2(3) = 1247.93 Prob > chi2 = 0.0000 Log likelihood = -1387.6569 Pseudo R2 = 0.3102 ────────────────────┬──────────────────────────────────────────────────────────────── u3 │ Coef. Std. Err. z P>|z| [95% Conf. Interval] ────────────────────┼──────────────────────────────────────────────────────────────── 1.focal │ .1010664 .2011999 0.50 0.615 -.2932782 .495411 f_est_bayes │ 2.017137 .101751 19.82 0.000 1.817708 2.216565 │ focal#c.f_est_bayes │ 1 │ -.1353194 .1398696 -0.97 0.333 -.4094587 .1388199 │ _cons │ -4.403405 .1457512 -30.21 0.000 -4.689072 -4.117738 ────────────────────┴──────────────────────────────────────────────────────────────── Iteration 0: log likelihood = -1976.3606 Iteration 1: log likelihood = -1611.9891 Iteration 2: log likelihood = -1392.8889 Iteration 3: log likelihood = -1385.2905 Iteration 4: log likelihood = -1385.2512 Iteration 5: log likelihood = -1385.2512 Logistic regression Number of obs = 10,001 LR chi2(3) = 1182.22 Prob > chi2 = 0.0000 Log likelihood = -1385.2512 Pseudo R2 = 0.2991 ────────────────────┬──────────────────────────────────────────────────────────────── u4 │ Coef. Std. Err. z P>|z| [95% Conf. Interval] ────────────────────┼──────────────────────────────────────────────────────────────── 1.focal │ -.0003828 .1983158 -0.00 0.998 -.3890746 .3883089 f_est_bayes │ 1.95136 .0990443 19.70 0.000 1.757237 2.145483 │ focal#c.f_est_bayes │ 1 │ -.1139427 .1379302 -0.83 0.409 -.3842809 .1563955 │ _cons │ -4.317148 .1408297 -30.66 0.000 -4.593169 -4.041127 ────────────────────┴──────────────────────────────────────────────────────────────── Iteration 0: log likelihood = -2061.0617 Iteration 1: log likelihood = -1684.9126 Iteration 2: log likelihood = -1482.0622 Iteration 3: log likelihood = -1475.962 Iteration 4: log likelihood = -1475.9244 Iteration 5: log likelihood = -1475.9244 Logistic regression Number of obs = 10,001 LR chi2(3) = 1170.27 Prob > chi2 = 0.0000 Log likelihood = -1475.9244 Pseudo R2 = 0.2839 ────────────────────┬──────────────────────────────────────────────────────────────── u5 │ Coef. Std. Err. z P>|z| [95% Conf. Interval] ────────────────────┼──────────────────────────────────────────────────────────────── 1.focal │ .16324 .1852528 0.88 0.378 -.1998488 .5263288 f_est_bayes │ 1.867065 .0962936 19.39 0.000 1.678333 2.055797 │ focal#c.f_est_bayes │ 1 │ -.1008039 .1313737 -0.77 0.443 -.3582915 .1566838 │ _cons │ -4.230571 .1359761 -31.11 0.000 -4.497079 -3.964063 ────────────────────┴──────────────────────────────────────────────────────────────── Iteration 0: log likelihood = -2681.4743 Iteration 1: log likelihood = -2123.0032 Iteration 2: log likelihood = -1905.2671 Iteration 3: log likelihood = -1898.816 Iteration 4: log likelihood = -1898.7924 Iteration 5: log likelihood = -1898.7924 Logistic regression Number of obs = 10,001 LR chi2(3) = 1565.36 Prob > chi2 = 0.0000 Log likelihood = -1898.7924 Pseudo R2 = 0.2919 ────────────────────┬──────────────────────────────────────────────────────────────── u6 │ Coef. Std. Err. z P>|z| [95% Conf. Interval] ────────────────────┼──────────────────────────────────────────────────────────────── 1.focal │ .1617065 .1512602 1.07 0.285 -.1347579 .458171 f_est_bayes │ 1.839442 .084289 21.82 0.000 1.674239 2.004646 │ focal#c.f_est_bayes │ 1 │ -.0372411 .1160421 -0.32 0.748 -.2646795 .1901974 │ _cons │ -3.741616 .1107006 -33.80 0.000 -3.958585 -3.524647 ────────────────────┴──────────────────────────────────────────────────────────────── Iteration 0: log likelihood = -2673.9607 Iteration 1: log likelihood = -2072.4919 Iteration 2: log likelihood = -1814.1819 Iteration 3: log likelihood = -1804.1159 Iteration 4: log likelihood = -1804.0777 Iteration 5: log likelihood = -1804.0777 Logistic regression Number of obs = 10,001 LR chi2(3) = 1739.77 Prob > chi2 = 0.0000 Log likelihood = -1804.0777 Pseudo R2 = 0.3253 ────────────────────┬──────────────────────────────────────────────────────────────── u7 │ Coef. Std. Err. z P>|z| [95% Conf. Interval] ────────────────────┼──────────────────────────────────────────────────────────────── 1.focal │ .0018105 .1640085 0.01 0.991 -.3196402 .3232611 f_est_bayes │ 1.945328 .0877178 22.18 0.000 1.773404 2.117252 │ focal#c.f_est_bayes │ 1 │ .0875813 .124389 0.70 0.481 -.1562168 .3313793 │ _cons │ -3.850159 .1160671 -33.17 0.000 -4.077646 -3.622671 ────────────────────┴──────────────────────────────────────────────────────────────── Iteration 0: log likelihood = -2615.9245 Iteration 1: log likelihood = -2052.747 Iteration 2: log likelihood = -1816.2245 Iteration 3: log likelihood = -1808.0281 Iteration 4: log likelihood = -1807.9863 Iteration 5: log likelihood = -1807.9863 Logistic regression Number of obs = 10,001 LR chi2(3) = 1615.88 Prob > chi2 = 0.0000 Log likelihood = -1807.9863 Pseudo R2 = 0.3089 ────────────────────┬──────────────────────────────────────────────────────────────── u8 │ Coef. Std. Err. z P>|z| [95% Conf. Interval] ────────────────────┼──────────────────────────────────────────────────────────────── 1.focal │ .2425535 .1613619 1.50 0.133 -.0737101 .5588171 f_est_bayes │ 1.991921 .0899627 22.14 0.000 1.815597 2.168245 │ focal#c.f_est_bayes │ 1 │ -.1603309 .1218368 -1.32 0.188 -.3991266 .0784648 │ _cons │ -3.93049 .1200288 -32.75 0.000 -4.165743 -3.695238 ────────────────────┴──────────────────────────────────────────────────────────────── Iteration 0: log likelihood = -2728.7632 Iteration 1: log likelihood = -2092.9326 Iteration 2: log likelihood = -1820.0639 Iteration 3: log likelihood = -1808.4247 Iteration 4: log likelihood = -1808.3851 Iteration 5: log likelihood = -1808.3851 Logistic regression Number of obs = 10,001 LR chi2(3) = 1840.76 Prob > chi2 = 0.0000 Log likelihood = -1808.3851 Pseudo R2 = 0.3373 ────────────────────┬──────────────────────────────────────────────────────────────── u9 │ Coef. Std. Err. z P>|z| [95% Conf. Interval] ────────────────────┼──────────────────────────────────────────────────────────────── 1.focal │ .1863548 .1663344 1.12 0.263 -.1396547 .5123643 f_est_bayes │ 2.084298 .0919163 22.68 0.000 1.904146 2.264451 │ focal#c.f_est_bayes │ 1 │ -.0653359 .1264097 -0.52 0.605 -.3130944 .1824226 │ _cons │ -3.970444 .1221161 -32.51 0.000 -4.209787 -3.7311 ────────────────────┴──────────────────────────────────────────────────────────────── Iteration 0: log likelihood = -2802.4074 Iteration 1: log likelihood = -2177.9652 Iteration 2: log likelihood = -1937.4252 Iteration 3: log likelihood = -1929.4049 Iteration 4: log likelihood = -1929.3664 Iteration 5: log likelihood = -1929.3664 Logistic regression Number of obs = 10,001 LR chi2(3) = 1746.08 Prob > chi2 = 0.0000 Log likelihood = -1929.3664 Pseudo R2 = 0.3115 ────────────────────┬──────────────────────────────────────────────────────────────── u10 │ Coef. Std. Err. z P>|z| [95% Conf. Interval] ────────────────────┼──────────────────────────────────────────────────────────────── 1.focal │ -.0948999 .1522199 -0.62 0.533 -.3932455 .2034456 f_est_bayes │ 1.850282 .0819606 22.58 0.000 1.689642 2.010921 │ focal#c.f_est_bayes │ 1 │ .1275024 .1180057 1.08 0.280 -.1037844 .3587893 │ _cons │ -3.622359 .105405 -34.37 0.000 -3.828949 -3.415769 ────────────────────┴────────────────────────────────────────────────────────────────
The answer is yes, the excess type-I error problem goes away with Bayes factor score estimates.
It is unknown if there is any power to detect DIF if it really existed with the Bayes factor score estimate approach, so this is only half the important answer.
fin