Regression-method detection of DIF with heteroskedastic measurement errors

Rich Jones

August 20 2021

TLDR

I demonstrate that attempts to detect DIF using a logistic regression approach and estimated factor scores face strong bias when the two groups have latent traits measured with

I also show that attempting to get around the problem using Bayes estimates for factor scores seems to eliminate the excess type-I error problem.

It remains to be seen if the Bayes factor score estimate approach has any degree of statistical power.

Simulate data

. local nobs=10001 // total number of examinees

. clear

. set seed 3481

. simirt , nitems(30) ///
>    pvalue( ///
>  .050 .050 .050 .050 .050 ///
>  .075 .075 .075 .075 .075 ///
>  .100 .100 .100 .100 .100 ///
>  .2   .2   .2   .2   .2   ///
>  .4   .4   .4   .4   .4  ///
>  .5   .5   .5   .5   .5  ) ///
>   nobs(`nobs')
there are 30 items
                                       true 2PL parameters         sample statistics
           input parameters            ────────────────────────                  2PL
           ──────────────────────────  slope    slope    loca-                   ───────────────────
   item    corr     threshold  Pvalue  (D=1.7) (D=1.0)  tion      corr   Pvalue slope(D=1.7) location
   ─────────────────────────────────────────────────────────────────────────────────────────────────
    1      0.707     1.645     0.050   1.000    1.699    2.327     0.709  0.050   1.005      2.315
    2      0.707     1.645     0.050   1.000    1.699    2.327     0.702  0.049   0.987      2.360
    3      0.707     1.645     0.050   1.000    1.699    2.327     0.703  0.051   0.987      2.329
    4      0.707     1.645     0.050   1.000    1.699    2.327     0.708  0.050   1.003      2.327
    5      0.707     1.645     0.050   1.000    1.699    2.327     0.707  0.053   0.999      2.292
    6      0.707     1.440     0.075   1.000    1.699    2.036     0.704  0.076   0.992      2.037
    7      0.707     1.440     0.075   1.000    1.699    2.036     0.708  0.075   1.001      2.031
    8      0.707     1.440     0.075   1.000    1.699    2.036     0.709  0.073   1.004      2.051
    9      0.707     1.440     0.075   1.000    1.699    2.036     0.710  0.078   1.010      2.001
    10     0.707     1.440     0.075   1.000    1.699    2.036     0.705  0.081   0.995      1.986
    11     0.707     1.282     0.100   1.000    1.699    1.813     0.705  0.102   0.995      1.799
    12     0.707     1.282     0.100   1.000    1.699    1.813     0.718  0.103   1.030      1.758
    13     0.707     1.282     0.100   1.000    1.699    1.813     0.704  0.104   0.992      1.790
    14     0.707     1.282     0.100   1.000    1.699    1.813     0.702  0.099   0.987      1.830
    15     0.707     1.282     0.100   1.000    1.699    1.813     0.703  0.100   0.988      1.822
    16     0.707     0.842     0.200   1.000    1.699    1.190     0.716  0.201   1.025      1.169
    17     0.707     0.842     0.200   1.000    1.699    1.190     0.708  0.194   1.004      1.218
    18     0.707     0.842     0.200   1.000    1.699    1.190     0.710  0.195   1.009      1.209
    19     0.707     0.842     0.200   1.000    1.699    1.190     0.705  0.202   0.993      1.184
    20     0.707     0.842     0.200   1.000    1.699    1.190     0.713  0.204   1.016      1.163
    21     0.707     0.253     0.400   1.000    1.699    0.358     0.709  0.392   1.005      0.386
    22     0.707     0.253     0.400   1.000    1.699    0.358     0.702  0.393   0.987      0.388
    23     0.707     0.253     0.400   1.000    1.699    0.358     0.713  0.395   1.017      0.374
    24     0.707     0.253     0.400   1.000    1.699    0.358     0.699  0.410   0.978      0.327
    25     0.707     0.253     0.400   1.000    1.699    0.358     0.708  0.394   1.003      0.379
    26     0.707     0.000     0.500   1.000    1.699    0.000     0.709  0.501   1.006     -0.003
    27     0.707     0.000     0.500   1.000    1.699    0.000     0.703  0.496   0.989      0.013
    28     0.707     0.000     0.500   1.000    1.699    0.000     0.705  0.502   0.995     -0.007
    29     0.707     0.000     0.500   1.000    1.699    0.000     0.705  0.504   0.994     -0.013
    30     0.707     0.000     0.500   1.000    1.699    0.000     0.714  0.498   1.021      0.009
   ─────────────────────────────────────────────────────────────────────────────────────────────────
  All items scored 0/1. The Pvalue is the proportion item=1. Corr is the correlation of the latent
  trait and the latent response variable underlying the item (i.e., the standardized factor
  loading). 2PL refers to two parameter logistic item response theory models, which can be
  parameterized with a scaling constant D that often assumed to be 1.0 or 1.7.

. keep u* q

. gen focal=_n>`c(N)'/2

. gen id=_n

. scoreit u* , gen(sumscore)
Applying the .4 rule: more than 40% of items must be non-missing to have a total score.

NB: 0 observations set to missing on sumscore due to missing on all items


Test scale = mean(unstandardized items)

Average interitem covariance:     .0339592
Number of items in the scale:           30
Scale reliability coefficient:      0.9032

Item Means +/- 1 SD from mean on scale
Item        High      Low
────────────────────────────────────────
u1           0.24      0.00  
u2           0.23      0.00  
u3           0.23      0.00  
u4           0.24      0.00  
u5           0.24      0.00  
u6           0.32      0.00  
u7           0.35      0.00  
u8           0.31      0.00  
u9           0.36      0.00  
u10          0.34      0.00  
u11          0.42      0.00  
u12          0.43      0.00  
u13          0.43      0.00  
u14          0.39      0.00  
u15          0.39      0.00  
u16          0.64      0.00  
u17          0.62      0.00  
u18          0.63      0.00  
u19          0.65      0.00  
u20          0.64      0.00  
u21          0.86      0.00  
u22          0.86      0.00  
u23          0.88      0.00  
u24          0.88      0.00  
u25          0.87      0.00  
u26          0.93      0.00  
u27          0.93      0.00  
u28          0.93      0.00  
u29          0.94      0.00  
u30          0.94      0.00  

. table focal, c(min sumscore max sumscore med sumscore)

──────────┬────────────────────────────────────────────
    focal │ min(sumscore)  max(sumscore)  med(sumscore)
──────────┼────────────────────────────────────────────
        0 │             0             30              5
        1 │             0             29              5
──────────┴────────────────────────────────────────────

. table focal, c(min q max q med q)

──────────┬───────────────────────────────────
    focal │     min(q)      max(q)      med(q)
──────────┼───────────────────────────────────
        0 │  -3.345039    3.336954    .0195344
        1 │  -3.581353    3.495501    .0213594
──────────┴───────────────────────────────────

. tempfile f1

. save `f1' , replace
(note: file /var/folders/lq/w3m6z0dj41ngkbbc0204xb7m0000gp/T//S_03002.000004 not found)
file /var/folders/lq/w3m6z0dj41ngkbbc0204xb7m0000gp/T//S_03002.000004 saved

Mplus parameter estimates

Note that I use WLSMV/theta because I want to switch to Bayes later on.

. runmplus u1-u30 , ///
>    estimator(wlsmv) parameterization(theta) ///
>    cat(all) model(f by u1-u30*; f@1;) ///
>    output(svalues;) savelog(foo)


     Mplus VERSION 8.6 (Mac)
     MUTHEN & MUTHEN

     Running input file '__000001.inp'...

     Beginning Time:  13:11:27
        Ending Time:  13:11:30
       Elapsed Time:  00:00:03

     Output saved in '__000001.out'.
THE MODEL ESTIMATION TERMINATED NORMALLY
Mplus VERSION 8.6 (Mac)
MUTHEN & MUTHEN
08/20/2021   1:11 PM

INPUT INSTRUCTIONS

  TITLE:
    Variable List -

    u1 :
    u2 :
    u3 :
    u4 :
    u5 :
    u6 :
    u7 :
    u8 :
    u9 :
    u10 :
    u11 :
    u12 :
    u13 :
    u14 :
    u15 :
    u16 :
    u17 :
    u18 :
    u19 :
    u20 :
    u21 :
    u22 :
    u23 :
    u24 :
    u25 :
    u26 :
    u27 :
    u28 :
    u29 :
    u30 :

  DATA:
    FILE = __000001.dat ;
  VARIABLE:
    NAMES =
      u1 u2 u3 u4 u5 u6 u7 u8 u9 u10 u11 u12 u13 u14 u15 u16 u17 u18
  u19 u20 u21 u22 u23 u24 u25 u26 u27 u28 u29 u30 ;
    MISSING ARE ALL (-9999) ;
    CATEGORICAL =
      all
      ;
  ANALYSIS:
     ESTIMATOR = wlsmv ;
     PARAMETERIZATION = theta ;
  OUTPUT:
  svalues ;

  MODEL:
  f by u1-u30* ;
  f@1 ;




INPUT READING TERMINATED NORMALLY




Variable List -

u1 :
u2 :
u3 :
u4 :
u5 :
u6 :
u7 :
u8 :
u9 :
u10 :
u11 :
u12 :
u13 :
u14 :
u15 :
u16 :
u17 :
u18 :
u19 :
u20 :
u21 :
u22 :
u23 :
u24 :
u25 :
u26 :
u27 :
u28 :
u29 :
u30 :

SUMMARY OF ANALYSIS

Number of groups                                                 1
Number of observations                                       10001

Number of dependent variables                                   30
Number of independent variables                                  0
Number of continuous latent variables                            1

Observed dependent variables

  Binary and ordered categorical (ordinal)
   U1          U2          U3          U4          U5          U6
   U7          U8          U9          U10         U11         U12
   U13         U14         U15         U16         U17         U18
   U19         U20         U21         U22         U23         U24
   U25         U26         U27         U28         U29         U30

Continuous latent variables
   F


Estimator                                                    WLSMV
Maximum number of iterations                                  1000
Convergence criterion                                    0.500D-04
Maximum number of steepest descent iterations                   20
Maximum number of iterations for H1                           2000
Convergence criterion for H1                             0.100D-03
Parameterization                                             THETA
Link                                                        PROBIT

Input data file(s)
  __000001.dat

Input data format  FREE


SUMMARY OF DATA

     Number of missing data patterns             1


COVARIANCE COVERAGE OF DATA

Minimum covariance coverage value   0.100


     PROPORTION OF DATA PRESENT


           Covariance Coverage
              U1            U2            U3            U4            U5
              ________      ________      ________      ________      ________
 U1             1.000
 U2             1.000         1.000
 U3             1.000         1.000         1.000
 U4             1.000         1.000         1.000         1.000
 U5             1.000         1.000         1.000         1.000         1.000
 U6             1.000         1.000         1.000         1.000         1.000
 U7             1.000         1.000         1.000         1.000         1.000
 U8             1.000         1.000         1.000         1.000         1.000
 U9             1.000         1.000         1.000         1.000         1.000
 U10            1.000         1.000         1.000         1.000         1.000
 U11            1.000         1.000         1.000         1.000         1.000
 U12            1.000         1.000         1.000         1.000         1.000
 U13            1.000         1.000         1.000         1.000         1.000
 U14            1.000         1.000         1.000         1.000         1.000
 U15            1.000         1.000         1.000         1.000         1.000
 U16            1.000         1.000         1.000         1.000         1.000
 U17            1.000         1.000         1.000         1.000         1.000
 U18            1.000         1.000         1.000         1.000         1.000
 U19            1.000         1.000         1.000         1.000         1.000
 U20            1.000         1.000         1.000         1.000         1.000
 U21            1.000         1.000         1.000         1.000         1.000
 U22            1.000         1.000         1.000         1.000         1.000
 U23            1.000         1.000         1.000         1.000         1.000
 U24            1.000         1.000         1.000         1.000         1.000
 U25            1.000         1.000         1.000         1.000         1.000
 U26            1.000         1.000         1.000         1.000         1.000
 U27            1.000         1.000         1.000         1.000         1.000
 U28            1.000         1.000         1.000         1.000         1.000
 U29            1.000         1.000         1.000         1.000         1.000
 U30            1.000         1.000         1.000         1.000         1.000


           Covariance Coverage
              U6            U7            U8            U9            U10
              ________      ________      ________      ________      ________
 U6             1.000
 U7             1.000         1.000
 U8             1.000         1.000         1.000
 U9             1.000         1.000         1.000         1.000
 U10            1.000         1.000         1.000         1.000         1.000
 U11            1.000         1.000         1.000         1.000         1.000
 U12            1.000         1.000         1.000         1.000         1.000
 U13            1.000         1.000         1.000         1.000         1.000
 U14            1.000         1.000         1.000         1.000         1.000
 U15            1.000         1.000         1.000         1.000         1.000
 U16            1.000         1.000         1.000         1.000         1.000
 U17            1.000         1.000         1.000         1.000         1.000
 U18            1.000         1.000         1.000         1.000         1.000
 U19            1.000         1.000         1.000         1.000         1.000
 U20            1.000         1.000         1.000         1.000         1.000
 U21            1.000         1.000         1.000         1.000         1.000
 U22            1.000         1.000         1.000         1.000         1.000
 U23            1.000         1.000         1.000         1.000         1.000
 U24            1.000         1.000         1.000         1.000         1.000
 U25            1.000         1.000         1.000         1.000         1.000
 U26            1.000         1.000         1.000         1.000         1.000
 U27            1.000         1.000         1.000         1.000         1.000
 U28            1.000         1.000         1.000         1.000         1.000
 U29            1.000         1.000         1.000         1.000         1.000
 U30            1.000         1.000         1.000         1.000         1.000


           Covariance Coverage
              U11           U12           U13           U14           U15
              ________      ________      ________      ________      ________
 U11            1.000
 U12            1.000         1.000
 U13            1.000         1.000         1.000
 U14            1.000         1.000         1.000         1.000
 U15            1.000         1.000         1.000         1.000         1.000
 U16            1.000         1.000         1.000         1.000         1.000
 U17            1.000         1.000         1.000         1.000         1.000
 U18            1.000         1.000         1.000         1.000         1.000
 U19            1.000         1.000         1.000         1.000         1.000
 U20            1.000         1.000         1.000         1.000         1.000
 U21            1.000         1.000         1.000         1.000         1.000
 U22            1.000         1.000         1.000         1.000         1.000
 U23            1.000         1.000         1.000         1.000         1.000
 U24            1.000         1.000         1.000         1.000         1.000
 U25            1.000         1.000         1.000         1.000         1.000
 U26            1.000         1.000         1.000         1.000         1.000
 U27            1.000         1.000         1.000         1.000         1.000
 U28            1.000         1.000         1.000         1.000         1.000
 U29            1.000         1.000         1.000         1.000         1.000
 U30            1.000         1.000         1.000         1.000         1.000


           Covariance Coverage
              U16           U17           U18           U19           U20
              ________      ________      ________      ________      ________
 U16            1.000
 U17            1.000         1.000
 U18            1.000         1.000         1.000
 U19            1.000         1.000         1.000         1.000
 U20            1.000         1.000         1.000         1.000         1.000
 U21            1.000         1.000         1.000         1.000         1.000
 U22            1.000         1.000         1.000         1.000         1.000
 U23            1.000         1.000         1.000         1.000         1.000
 U24            1.000         1.000         1.000         1.000         1.000
 U25            1.000         1.000         1.000         1.000         1.000
 U26            1.000         1.000         1.000         1.000         1.000
 U27            1.000         1.000         1.000         1.000         1.000
 U28            1.000         1.000         1.000         1.000         1.000
 U29            1.000         1.000         1.000         1.000         1.000
 U30            1.000         1.000         1.000         1.000         1.000


           Covariance Coverage
              U21           U22           U23           U24           U25
              ________      ________      ________      ________      ________
 U21            1.000
 U22            1.000         1.000
 U23            1.000         1.000         1.000
 U24            1.000         1.000         1.000         1.000
 U25            1.000         1.000         1.000         1.000         1.000
 U26            1.000         1.000         1.000         1.000         1.000
 U27            1.000         1.000         1.000         1.000         1.000
 U28            1.000         1.000         1.000         1.000         1.000
 U29            1.000         1.000         1.000         1.000         1.000
 U30            1.000         1.000         1.000         1.000         1.000


           Covariance Coverage
              U26           U27           U28           U29           U30
              ________      ________      ________      ________      ________
 U26            1.000
 U27            1.000         1.000
 U28            1.000         1.000         1.000
 U29            1.000         1.000         1.000         1.000
 U30            1.000         1.000         1.000         1.000         1.000


UNIVARIATE PROPORTIONS AND COUNTS FOR CATEGORICAL VARIABLES

    U1
      Category 1    0.950         9497.000
      Category 2    0.050          504.000
    U2
      Category 1    0.951         9514.000
      Category 2    0.049          487.000
    U3
      Category 1    0.949         9492.000
      Category 2    0.051          509.000
    U4
      Category 1    0.950         9504.000
      Category 2    0.050          497.000
    U5
      Category 1    0.947         9475.000
      Category 2    0.053          526.000
    U6
      Category 1    0.924         9244.000
      Category 2    0.076          757.000
    U7
      Category 1    0.925         9247.000
      Category 2    0.075          754.000
    U8
      Category 1    0.927         9270.000
      Category 2    0.073          731.000
    U9
      Category 1    0.922         9225.000
      Category 2    0.078          776.000
    U10
      Category 1    0.919         9195.000
      Category 2    0.081          806.000
    U11
      Category 1    0.898         8978.000
      Category 2    0.102         1023.000
    U12
      Category 1    0.897         8966.000
      Category 2    0.103         1035.000
    U13
      Category 1    0.896         8964.000
      Category 2    0.104         1037.000
    U14
      Category 1    0.901         9008.000
      Category 2    0.099          993.000
    U15
      Category 1    0.900         8999.000
      Category 2    0.100         1002.000
    U16
      Category 1    0.799         7987.000
      Category 2    0.201         2014.000
    U17
      Category 1    0.806         8060.000
      Category 2    0.194         1941.000
    U18
      Category 1    0.805         8049.000
      Category 2    0.195         1952.000
    U19
      Category 1    0.798         7980.000
      Category 2    0.202         2021.000
    U20
      Category 1    0.796         7965.000
      Category 2    0.204         2036.000
    U21
      Category 1    0.608         6078.000
      Category 2    0.392         3923.000
    U22
      Category 1    0.607         6075.000
      Category 2    0.393         3926.000
    U23
      Category 1    0.605         6052.000
      Category 2    0.395         3949.000
    U24
      Category 1    0.590         5905.000
      Category 2    0.410         4096.000
    U25
      Category 1    0.606         6060.000
      Category 2    0.394         3941.000
    U26
      Category 1    0.499         4992.000
      Category 2    0.501         5009.000
    U27
      Category 1    0.504         5038.000
      Category 2    0.496         4963.000
    U28
      Category 1    0.498         4981.000
      Category 2    0.502         5020.000
    U29
      Category 1    0.496         4963.000
      Category 2    0.504         5038.000
    U30
      Category 1    0.502         5025.000
      Category 2    0.498         4976.000



THE MODEL ESTIMATION TERMINATED NORMALLY



MODEL FIT INFORMATION

Number of Free Parameters                       60

Chi-Square Test of Model Fit

          Value                            417.505*
          Degrees of Freedom                   405
          P-Value                           0.3234

*   The chi-square value for MLM, MLMV, MLR, ULSMV, WLSM and WLSMV cannot be used
    for chi-square difference testing in the regular way.  MLM, MLR and WLSM
    chi-square difference testing is described on the Mplus website.  MLMV, WLSMV,
    and ULSMV difference testing is done using the DIFFTEST option.

RMSEA (Root Mean Square Error Of Approximation)

          Estimate                           0.002
          90 Percent C.I.                    0.000  0.004
          Probability RMSEA <= .05           1.000

CFI/TLI

          CFI                                1.000
          TLI                                1.000

Chi-Square Test of Model Fit for the Baseline Model

          Value                         155989.957
          Degrees of Freedom                   435
          P-Value                           0.0000

SRMR (Standardized Root Mean Square Residual)

          Value                              0.016

Optimum Function Value for Weighted Least-Squares Estimator

          Value                     0.14370107D-01



MODEL RESULTS

                                                    Two-Tailed
                    Estimate       S.E.  Est./S.E.    P-Value

 F        BY
    U1                 1.014      0.042     24.271      0.000
    U2                 0.977      0.042     23.160      0.000
    U3                 0.965      0.041     23.529      0.000
    U4                 0.981      0.041     23.974      0.000
    U5                 0.909      0.036     25.021      0.000
    U6                 0.978      0.036     27.108      0.000
    U7                 1.076      0.040     26.980      0.000
    U8                 0.979      0.037     26.512      0.000
    U9                 1.063      0.039     27.584      0.000
    U10                0.998      0.036     27.652      0.000
    U11                1.017      0.034     30.032      0.000
    U12                1.049      0.035     29.831      0.000
    U13                1.025      0.034     30.042      0.000
    U14                0.953      0.032     29.613      0.000
    U15                0.955      0.032     29.478      0.000
    U16                1.002      0.028     36.239      0.000
    U17                0.982      0.027     36.147      0.000
    U18                1.005      0.028     36.121      0.000
    U19                1.031      0.028     36.332      0.000
    U20                0.995      0.027     36.637      0.000
    U21                0.983      0.024     40.952      0.000
    U22                1.012      0.025     41.171      0.000
    U23                1.037      0.025     41.654      0.000
    U24                0.995      0.024     41.012      0.000
    U25                0.990      0.024     41.094      0.000
    U26                1.005      0.024     41.129      0.000
    U27                1.006      0.024     41.463      0.000
    U28                1.031      0.025     41.248      0.000
    U29                1.014      0.024     41.746      0.000
    U30                1.069      0.025     42.107      0.000

 Thresholds
    U1$1               2.337      0.052     45.223      0.000
    U2$1               2.317      0.052     44.597      0.000
    U3$1               2.274      0.050     45.522      0.000
    U4$1               2.308      0.050     45.849      0.000
    U5$1               2.190      0.044     50.280      0.000
    U6$1               2.006      0.041     49.416      0.000
    U7$1               2.111      0.046     46.190      0.000
    U8$1               2.033      0.042     48.574      0.000
    U9$1               2.074      0.044     47.395      0.000
    U10$1              1.979      0.040     49.288      0.000
    U11$1              1.810      0.036     50.554      0.000
    U12$1              1.829      0.037     49.201      0.000
    U13$1              1.805      0.036     50.176      0.000
    U14$1              1.776      0.034     52.200      0.000
    U15$1              1.770      0.034     51.873      0.000
    U16$1              1.184      0.025     48.104      0.000
    U17$1              1.209      0.025     49.314      0.000
    U18$1              1.218      0.025     48.697      0.000
    U19$1              1.199      0.025     47.643      0.000
    U20$1              1.170      0.024     48.191      0.000
    U21$1              0.384      0.018     20.972      0.000
    U22$1              0.388      0.019     20.883      0.000
    U23$1              0.384      0.019     20.429      0.000
    U24$1              0.323      0.018     17.722      0.000
    U25$1              0.378      0.018     20.623      0.000
    U26$1             -0.003      0.018     -0.170      0.865
    U27$1              0.013      0.018      0.750      0.453
    U28$1             -0.007      0.018     -0.390      0.697
    U29$1             -0.013      0.018     -0.750      0.453
    U30$1              0.009      0.018      0.490      0.624

 Variances
    F                  1.000      0.000    999.000    999.000


QUALITY OF NUMERICAL RESULTS

     Condition Number for the Information Matrix              0.690E-01
       (ratio of smallest to largest eigenvalue)


IRT PARAMETERIZATION

                                                    Two-Tailed
                    Estimate       S.E.  Est./S.E.    P-Value

 Item Discriminations

 F        BY
    U1                 1.014      0.042     24.271      0.000
    U2                 0.977      0.042     23.160      0.000
    U3                 0.965      0.041     23.529      0.000
    U4                 0.981      0.041     23.974      0.000
    U5                 0.909      0.036     25.021      0.000
    U6                 0.978      0.036     27.108      0.000
    U7                 1.076      0.040     26.980      0.000
    U8                 0.979      0.037     26.512      0.000
    U9                 1.063      0.039     27.584      0.000
    U10                0.998      0.036     27.652      0.000
    U11                1.017      0.034     30.032      0.000
    U12                1.049      0.035     29.831      0.000
    U13                1.025      0.034     30.042      0.000
    U14                0.953      0.032     29.613      0.000
    U15                0.955      0.032     29.478      0.000
    U16                1.002      0.028     36.239      0.000
    U17                0.982      0.027     36.147      0.000
    U18                1.005      0.028     36.121      0.000
    U19                1.031      0.028     36.332      0.000
    U20                0.995      0.027     36.637      0.000
    U21                0.983      0.024     40.952      0.000
    U22                1.012      0.025     41.171      0.000
    U23                1.037      0.025     41.654      0.000
    U24                0.995      0.024     41.012      0.000
    U25                0.990      0.024     41.094      0.000
    U26                1.005      0.024     41.129      0.000
    U27                1.006      0.024     41.463      0.000
    U28                1.031      0.025     41.248      0.000
    U29                1.014      0.024     41.746      0.000
    U30                1.069      0.025     42.107      0.000

 Item Difficulties
    U1$1               2.304      0.060     38.156      0.000
    U2$1               2.373      0.066     36.137      0.000
    U3$1               2.356      0.065     36.299      0.000
    U4$1               2.353      0.064     37.037      0.000
    U5$1               2.409      0.066     36.279      0.000
    U6$1               2.052      0.051     40.501      0.000
    U7$1               1.961      0.046     42.902      0.000
    U8$1               2.078      0.052     40.013      0.000
    U9$1               1.952      0.045     43.053      0.000
    U10$1              1.984      0.048     41.509      0.000
    U11$1              1.779      0.041     43.888      0.000
    U12$1              1.744      0.039     44.584      0.000
    U13$1              1.761      0.040     44.120      0.000
    U14$1              1.864      0.044     42.013      0.000
    U15$1              1.854      0.044     41.972      0.000
    U16$1              1.182      0.027     43.449      0.000
    U17$1              1.232      0.028     43.470      0.000
    U18$1              1.212      0.028     43.834      0.000
    U19$1              1.162      0.026     43.885      0.000
    U20$1              1.175      0.027     43.366      0.000
    U21$1              0.390      0.019     20.659      0.000
    U22$1              0.383      0.019     20.659      0.000
    U23$1              0.370      0.018     20.312      0.000
    U24$1              0.324      0.018     17.579      0.000
    U25$1              0.382      0.019     20.369      0.000
    U26$1             -0.003      0.018     -0.170      0.865
    U27$1              0.013      0.018      0.750      0.453
    U28$1             -0.007      0.017     -0.390      0.697
    U29$1             -0.013      0.018     -0.750      0.453
    U30$1              0.008      0.017      0.490      0.624

 Variances
    F                  1.000      0.000      0.000      1.000


MODEL COMMAND WITH FINAL ESTIMATES USED AS STARTING VALUES

     f BY u1*1.01409;
     f BY u2*0.97653;
     f BY u3*0.96534;
     f BY u4*0.98097;
     f BY u5*0.90888;
     f BY u6*0.97777;
     f BY u7*1.07641;
     f BY u8*0.97867;
     f BY u9*1.06260;
     f BY u10*0.99782;
     f BY u11*1.01746;
     f BY u12*1.04867;
     f BY u13*1.02499;
     f BY u14*0.95264;
     f BY u15*0.95452;
     f BY u16*1.00153;
     f BY u17*0.98187;
     f BY u18*1.00501;
     f BY u19*1.03146;
     f BY u20*0.99537;
     f BY u21*0.98347;
     f BY u22*1.01198;
     f BY u23*1.03699;
     f BY u24*0.99536;
     f BY u25*0.99005;
     f BY u26*1.00510;
     f BY u27*1.00563;
     f BY u28*1.03124;
     f BY u29*1.01361;
     f BY u30*1.06863;

     [ u1$1*2.33686 ];
     [ u2$1*2.31682 ];
     [ u3$1*2.27431 ];
     [ u4$1*2.30823 ];
     [ u5$1*2.18950 ];
     [ u6$1*2.00644 ];
     [ u7$1*2.11101 ];
     [ u8$1*2.03322 ];
     [ u9$1*2.07416 ];
     [ u10$1*1.97926 ];
     [ u11$1*1.80978 ];
     [ u12$1*1.82851 ];
     [ u13$1*1.80543 ];
     [ u14$1*1.77559 ];
     [ u15$1*1.77015 ];
     [ u16$1*1.18424 ];
     [ u17$1*1.20945 ];
     [ u18$1*1.21787 ];
     [ u19$1*1.19854 ];
     [ u20$1*1.16959 ];
     [ u21$1*0.38352 ];
     [ u22$1*0.38790 ];
     [ u23$1*0.38417 ];
     [ u24$1*0.32265 ];
     [ u25$1*0.37819 ];
     [ u26$1*-0.00302 ];
     [ u27$1*0.01333 ];
     [ u28$1*-0.00702 ];
     [ u29$1*-0.01338 ];
     [ u30$1*0.00899 ];

     f@1;



     Beginning Time:  13:11:27
        Ending Time:  13:11:30
       Elapsed Time:  00:00:03



MUTHEN & MUTHEN
3463 Stoner Ave.
Los Angeles, CA  90066

Tel: (310) 391-9971
Fax: (310) 391-8971
Web: www.StatModel.com
Support: Support@StatModel.com

Copyright (c) 1998-2021 Muthen & Muthen

. runmplus_read_svalues , out(foo.out)
svalues.txt saved
local macro passes consistency check
matrix svalues in return results


. mat svalues = r(Svalues)

Mplus factor score estimates for the reference group.

The reference group has answers to all 30 items.

. use `f1' , clear

. keep if focal~=1
(5,001 observations deleted)

. forvalues i=1/30 {
  2.   local l`i' = svalues[`i',1]
  3.   local t=`i'+30
  4.   local t`i' = svalues[`t',1]
  5.   local model "`model' f by u`i'@`l`i'' ;"
  6.   local model "`model' [u`i'$1@`t`i''] ;"
  7. }

. runmplus u1-u30 , cat(all) idvariable(id) ///
>    estimator(wlsmv) parameterization(theta) ///
>    model(`model' f@1;) ///
>    savedata(save=fscores; file=ref.dat;) ///
>    savelog(foo)


     Mplus VERSION 8.6 (Mac)
     MUTHEN & MUTHEN

     Running input file '__000001.inp'...

     Beginning Time:  13:11:31
        Ending Time:  13:11:33
       Elapsed Time:  00:00:02

     Output saved in '__000001.out'.
THE MODEL ESTIMATION TERMINATED NORMALLY
Mplus VERSION 8.6 (Mac)
MUTHEN & MUTHEN
08/20/2021   1:11 PM

INPUT INSTRUCTIONS

  TITLE:
    Variable List -

    u1 :
    u2 :
    u3 :
    u4 :
    u5 :
    u6 :
    u7 :
    u8 :
    u9 :
    u10 :
    u11 :
    u12 :
    u13 :
    u14 :
    u15 :
    u16 :
    u17 :
    u18 :
    u19 :
    u20 :
    u21 :
    u22 :
    u23 :
    u24 :
    u25 :
    u26 :
    u27 :
    u28 :
    u29 :
    u30 :
    id :

  DATA:
    FILE = __000001.dat ;
  VARIABLE:
    NAMES =
      u1 u2 u3 u4 u5 u6 u7 u8 u9 u10 u11 u12 u13 u14 u15 u16 u17 u18
  u19 u20 u21 u22 u23 u24 u25 u26 u27 u28 u29 u30 id ;
    MISSING ARE ALL (-9999) ;
    CATEGORICAL =
      all
      ;
    IDVARIABLE = id ;
  ANALYSIS:
     ESTIMATOR = wlsmv ;
     PARAMETERIZATION = theta ;
  OUTPUT:
  SAVEDATA:
  save=fscores ;
  file=ref.dat ;

  MODEL:
  f by u1@1.01409  ;
  [u1$1@2.33686]  ;
  f by u2@.97653  ;
  [u2$1@2.31682]  ;
  f by u3@.96534  ;
  [u3$1@2.27431]  ;
  f by u4@.98097  ;
  [u4$1@2.30823]  ;
  f by u5@.90888  ;
  [u5$1@2.1895]  ;
  f by u6@.97777  ;
  [u6$1@2.00644]  ;
  f by u7@1.07641  ;
  [u7$1@2.11101]  ;
  f by u8@.97867  ;
  [u8$1@2.03322]  ;
  f by u9@1.0626  ;
  [u9$1@2.07416]  ;
  f by u10@.99782  ;
  [u10$1@1.97926]  ;
  f by u11@1.01746  ;
  [u11$1@1.80978]  ;
  f by u12@1.04867  ;
  [u12$1@1.82851]  ;
  f by u13@1.02499  ;
  [u13$1@1.80543]  ;
  f by u14@.95264  ;
  [u14$1@1.77559]  ;
  f by u15@.95452  ;
  [u15$1@1.77015]  ;
  f by u16@1.00153  ;
  [u16$1@1.18424]  ;
  f by u17@.98187  ;
  [u17$1@1.20945]  ;
  f by u18@1.00501  ;
  [u18$1@1.21787]  ;
  f by u19@1.03146  ;
  [u19$1@1.19854]  ;
  f by u20@.99537  ;
  [u20$1@1.16959]  ;
  f by u21@.98347  ;
  [u21$1@.38352]  ;
  f by u22@1.01198  ;
  [u22$1@.3879]  ;
  f by u23@1.03699  ;
  [u23$1@.38417]  ;
  f by u24@.99536  ;
  [u24$1@.32265]  ;
  f by u25@.99005  ;
  [u25$1@.37819]  ;
  f by u26@1.0051  ;
  [u26$1@-.00302]  ;
  f by u27@1.00563  ;
  [u27$1@.01333]  ;
  f by u28@1.03124  ;
  [u28$1@-.00702]  ;
  f by u29@1.01361  ;
  [u29$1@-.01338]  ;
  f by u30@1.06863  ;
  [u30$1@.00899]  ;
  f@1 ;




INPUT READING TERMINATED NORMALLY




Variable List -

u1 :
u2 :
u3 :
u4 :
u5 :
u6 :
u7 :
u8 :
u9 :
u10 :
u11 :
u12 :
u13 :
u14 :
u15 :
u16 :
u17 :
u18 :
u19 :
u20 :
u21 :
u22 :
u23 :
u24 :
u25 :
u26 :
u27 :
u28 :
u29 :
u30 :
id :

SUMMARY OF ANALYSIS

Number of groups                                                 1
Number of observations                                        5000

Number of dependent variables                                   30
Number of independent variables                                  0
Number of continuous latent variables                            1

Observed dependent variables

  Binary and ordered categorical (ordinal)
   U1          U2          U3          U4          U5          U6
   U7          U8          U9          U10         U11         U12
   U13         U14         U15         U16         U17         U18
   U19         U20         U21         U22         U23         U24
   U25         U26         U27         U28         U29         U30

Continuous latent variables
   F

Variables with special functions

  ID variable           ID

Estimator                                                    WLSMV
Maximum number of iterations                                  1000
Convergence criterion                                    0.500D-04
Maximum number of steepest descent iterations                   20
Maximum number of iterations for H1                           2000
Convergence criterion for H1                             0.100D-03
Parameterization                                             THETA
Link                                                        PROBIT

Input data file(s)
  __000001.dat

Input data format  FREE


SUMMARY OF DATA

     Number of missing data patterns             1


COVARIANCE COVERAGE OF DATA

Minimum covariance coverage value   0.100


     PROPORTION OF DATA PRESENT


           Covariance Coverage
              U1            U2            U3            U4            U5
              ________      ________      ________      ________      ________
 U1             1.000
 U2             1.000         1.000
 U3             1.000         1.000         1.000
 U4             1.000         1.000         1.000         1.000
 U5             1.000         1.000         1.000         1.000         1.000
 U6             1.000         1.000         1.000         1.000         1.000
 U7             1.000         1.000         1.000         1.000         1.000
 U8             1.000         1.000         1.000         1.000         1.000
 U9             1.000         1.000         1.000         1.000         1.000
 U10            1.000         1.000         1.000         1.000         1.000
 U11            1.000         1.000         1.000         1.000         1.000
 U12            1.000         1.000         1.000         1.000         1.000
 U13            1.000         1.000         1.000         1.000         1.000
 U14            1.000         1.000         1.000         1.000         1.000
 U15            1.000         1.000         1.000         1.000         1.000
 U16            1.000         1.000         1.000         1.000         1.000
 U17            1.000         1.000         1.000         1.000         1.000
 U18            1.000         1.000         1.000         1.000         1.000
 U19            1.000         1.000         1.000         1.000         1.000
 U20            1.000         1.000         1.000         1.000         1.000
 U21            1.000         1.000         1.000         1.000         1.000
 U22            1.000         1.000         1.000         1.000         1.000
 U23            1.000         1.000         1.000         1.000         1.000
 U24            1.000         1.000         1.000         1.000         1.000
 U25            1.000         1.000         1.000         1.000         1.000
 U26            1.000         1.000         1.000         1.000         1.000
 U27            1.000         1.000         1.000         1.000         1.000
 U28            1.000         1.000         1.000         1.000         1.000
 U29            1.000         1.000         1.000         1.000         1.000
 U30            1.000         1.000         1.000         1.000         1.000


           Covariance Coverage
              U6            U7            U8            U9            U10
              ________      ________      ________      ________      ________
 U6             1.000
 U7             1.000         1.000
 U8             1.000         1.000         1.000
 U9             1.000         1.000         1.000         1.000
 U10            1.000         1.000         1.000         1.000         1.000
 U11            1.000         1.000         1.000         1.000         1.000
 U12            1.000         1.000         1.000         1.000         1.000
 U13            1.000         1.000         1.000         1.000         1.000
 U14            1.000         1.000         1.000         1.000         1.000
 U15            1.000         1.000         1.000         1.000         1.000
 U16            1.000         1.000         1.000         1.000         1.000
 U17            1.000         1.000         1.000         1.000         1.000
 U18            1.000         1.000         1.000         1.000         1.000
 U19            1.000         1.000         1.000         1.000         1.000
 U20            1.000         1.000         1.000         1.000         1.000
 U21            1.000         1.000         1.000         1.000         1.000
 U22            1.000         1.000         1.000         1.000         1.000
 U23            1.000         1.000         1.000         1.000         1.000
 U24            1.000         1.000         1.000         1.000         1.000
 U25            1.000         1.000         1.000         1.000         1.000
 U26            1.000         1.000         1.000         1.000         1.000
 U27            1.000         1.000         1.000         1.000         1.000
 U28            1.000         1.000         1.000         1.000         1.000
 U29            1.000         1.000         1.000         1.000         1.000
 U30            1.000         1.000         1.000         1.000         1.000


           Covariance Coverage
              U11           U12           U13           U14           U15
              ________      ________      ________      ________      ________
 U11            1.000
 U12            1.000         1.000
 U13            1.000         1.000         1.000
 U14            1.000         1.000         1.000         1.000
 U15            1.000         1.000         1.000         1.000         1.000
 U16            1.000         1.000         1.000         1.000         1.000
 U17            1.000         1.000         1.000         1.000         1.000
 U18            1.000         1.000         1.000         1.000         1.000
 U19            1.000         1.000         1.000         1.000         1.000
 U20            1.000         1.000         1.000         1.000         1.000
 U21            1.000         1.000         1.000         1.000         1.000
 U22            1.000         1.000         1.000         1.000         1.000
 U23            1.000         1.000         1.000         1.000         1.000
 U24            1.000         1.000         1.000         1.000         1.000
 U25            1.000         1.000         1.000         1.000         1.000
 U26            1.000         1.000         1.000         1.000         1.000
 U27            1.000         1.000         1.000         1.000         1.000
 U28            1.000         1.000         1.000         1.000         1.000
 U29            1.000         1.000         1.000         1.000         1.000
 U30            1.000         1.000         1.000         1.000         1.000


           Covariance Coverage
              U16           U17           U18           U19           U20
              ________      ________      ________      ________      ________
 U16            1.000
 U17            1.000         1.000
 U18            1.000         1.000         1.000
 U19            1.000         1.000         1.000         1.000
 U20            1.000         1.000         1.000         1.000         1.000
 U21            1.000         1.000         1.000         1.000         1.000
 U22            1.000         1.000         1.000         1.000         1.000
 U23            1.000         1.000         1.000         1.000         1.000
 U24            1.000         1.000         1.000         1.000         1.000
 U25            1.000         1.000         1.000         1.000         1.000
 U26            1.000         1.000         1.000         1.000         1.000
 U27            1.000         1.000         1.000         1.000         1.000
 U28            1.000         1.000         1.000         1.000         1.000
 U29            1.000         1.000         1.000         1.000         1.000
 U30            1.000         1.000         1.000         1.000         1.000


           Covariance Coverage
              U21           U22           U23           U24           U25
              ________      ________      ________      ________      ________
 U21            1.000
 U22            1.000         1.000
 U23            1.000         1.000         1.000
 U24            1.000         1.000         1.000         1.000
 U25            1.000         1.000         1.000         1.000         1.000
 U26            1.000         1.000         1.000         1.000         1.000
 U27            1.000         1.000         1.000         1.000         1.000
 U28            1.000         1.000         1.000         1.000         1.000
 U29            1.000         1.000         1.000         1.000         1.000
 U30            1.000         1.000         1.000         1.000         1.000


           Covariance Coverage
              U26           U27           U28           U29           U30
              ________      ________      ________      ________      ________
 U26            1.000
 U27            1.000         1.000
 U28            1.000         1.000         1.000
 U29            1.000         1.000         1.000         1.000
 U30            1.000         1.000         1.000         1.000         1.000


UNIVARIATE PROPORTIONS AND COUNTS FOR CATEGORICAL VARIABLES

    U1
      Category 1    0.950         4752.000
      Category 2    0.050          248.000
    U2
      Category 1    0.955         4773.000
      Category 2    0.045          227.000
    U3
      Category 1    0.949         4744.000
      Category 2    0.051          256.000
    U4
      Category 1    0.949         4743.000
      Category 2    0.051          257.000
    U5
      Category 1    0.949         4746.000
      Category 2    0.051          254.000
    U6
      Category 1    0.929         4643.000
      Category 2    0.071          357.000
    U7
      Category 1    0.928         4641.000
      Category 2    0.072          359.000
    U8
      Category 1    0.930         4648.000
      Category 2    0.070          352.000
    U9
      Category 1    0.926         4632.000
      Category 2    0.074          368.000
    U10
      Category 1    0.922         4608.000
      Category 2    0.078          392.000
    U11
      Category 1    0.894         4468.000
      Category 2    0.106          532.000
    U12
      Category 1    0.896         4478.000
      Category 2    0.104          522.000
    U13
      Category 1    0.899         4496.000
      Category 2    0.101          504.000
    U14
      Category 1    0.899         4495.000
      Category 2    0.101          505.000
    U15
      Category 1    0.900         4499.000
      Category 2    0.100          501.000
    U16
      Category 1    0.793         3967.000
      Category 2    0.207         1033.000
    U17
      Category 1    0.803         4017.000
      Category 2    0.197          983.000
    U18
      Category 1    0.805         4023.000
      Category 2    0.195          977.000
    U19
      Category 1    0.801         4004.000
      Category 2    0.199          996.000
    U20
      Category 1    0.795         3973.000
      Category 2    0.205         1027.000
    U21
      Category 1    0.602         3011.000
      Category 2    0.398         1989.000
    U22
      Category 1    0.605         3024.000
      Category 2    0.395         1976.000
    U23
      Category 1    0.610         3052.000
      Category 2    0.390         1948.000
    U24
      Category 1    0.593         2965.000
      Category 2    0.407         2035.000
    U25
      Category 1    0.608         3040.000
      Category 2    0.392         1960.000
    U26
      Category 1    0.506         2531.000
      Category 2    0.494         2469.000
    U27
      Category 1    0.503         2515.000
      Category 2    0.497         2485.000
    U28
      Category 1    0.499         2494.000
      Category 2    0.501         2506.000
    U29
      Category 1    0.503         2517.000
      Category 2    0.497         2483.000
    U30
      Category 1    0.506         2531.000
      Category 2    0.494         2469.000



THE MODEL ESTIMATION TERMINATED NORMALLY



MODEL FIT INFORMATION

Number of Free Parameters                        0

Chi-Square Test of Model Fit

          Value                            424.486*
          Degrees of Freedom                   465
          P-Value                           0.9110

*   The chi-square value for MLM, MLMV, MLR, ULSMV, WLSM and WLSMV cannot be used
    for chi-square difference testing in the regular way.  MLM, MLR and WLSM
    chi-square difference testing is described on the Mplus website.  MLMV, WLSMV,
    and ULSMV difference testing is done using the DIFFTEST option.

RMSEA (Root Mean Square Error Of Approximation)

          Estimate                           0.000
          90 Percent C.I.                    0.000  0.002
          Probability RMSEA <= .05           1.000

CFI/TLI

          CFI                                1.000
          TLI                                1.000

Chi-Square Test of Model Fit for the Baseline Model

          Value                          79339.170
          Degrees of Freedom                   435
          P-Value                           0.0000

SRMR (Standardized Root Mean Square Residual)

          Value                              0.025

Optimum Function Value for Weighted Least-Squares Estimator

          Value                     0.37896276D-01



MODEL RESULTS

                                                    Two-Tailed
                    Estimate       S.E.  Est./S.E.    P-Value

 F        BY
    U1                 1.014      0.000    999.000    999.000
    U2                 0.977      0.000    999.000    999.000
    U3                 0.965      0.000    999.000    999.000
    U4                 0.981      0.000    999.000    999.000
    U5                 0.909      0.000    999.000    999.000
    U6                 0.978      0.000    999.000    999.000
    U7                 1.076      0.000    999.000    999.000
    U8                 0.979      0.000    999.000    999.000
    U9                 1.063      0.000    999.000    999.000
    U10                0.998      0.000    999.000    999.000
    U11                1.017      0.000    999.000    999.000
    U12                1.049      0.000    999.000    999.000
    U13                1.025      0.000    999.000    999.000
    U14                0.953      0.000    999.000    999.000
    U15                0.955      0.000    999.000    999.000
    U16                1.002      0.000    999.000    999.000
    U17                0.982      0.000    999.000    999.000
    U18                1.005      0.000    999.000    999.000
    U19                1.031      0.000    999.000    999.000
    U20                0.995      0.000    999.000    999.000
    U21                0.983      0.000    999.000    999.000
    U22                1.012      0.000    999.000    999.000
    U23                1.037      0.000    999.000    999.000
    U24                0.995      0.000    999.000    999.000
    U25                0.990      0.000    999.000    999.000
    U26                1.005      0.000    999.000    999.000
    U27                1.006      0.000    999.000    999.000
    U28                1.031      0.000    999.000    999.000
    U29                1.014      0.000    999.000    999.000
    U30                1.069      0.000    999.000    999.000

 Thresholds
    U1$1               2.337      0.000    999.000    999.000
    U2$1               2.317      0.000    999.000    999.000
    U3$1               2.274      0.000    999.000    999.000
    U4$1               2.308      0.000    999.000    999.000
    U5$1               2.190      0.000    999.000    999.000
    U6$1               2.006      0.000    999.000    999.000
    U7$1               2.111      0.000    999.000    999.000
    U8$1               2.033      0.000    999.000    999.000
    U9$1               2.074      0.000    999.000    999.000
    U10$1              1.979      0.000    999.000    999.000
    U11$1              1.810      0.000    999.000    999.000
    U12$1              1.829      0.000    999.000    999.000
    U13$1              1.805      0.000    999.000    999.000
    U14$1              1.776      0.000    999.000    999.000
    U15$1              1.770      0.000    999.000    999.000
    U16$1              1.184      0.000    999.000    999.000
    U17$1              1.209      0.000    999.000    999.000
    U18$1              1.218      0.000    999.000    999.000
    U19$1              1.199      0.000    999.000    999.000
    U20$1              1.170      0.000    999.000    999.000
    U21$1              0.384      0.000    999.000    999.000
    U22$1              0.388      0.000    999.000    999.000
    U23$1              0.384      0.000    999.000    999.000
    U24$1              0.323      0.000    999.000    999.000
    U25$1              0.378      0.000    999.000    999.000
    U26$1             -0.003      0.000    999.000    999.000
    U27$1              0.013      0.000    999.000    999.000
    U28$1             -0.007      0.000    999.000    999.000
    U29$1             -0.013      0.000    999.000    999.000
    U30$1              0.009      0.000    999.000    999.000

 Variances
    F                  1.000      0.000    999.000    999.000


QUALITY OF NUMERICAL RESULTS

     Condition Number for the Information Matrix              0.000E+00
       (ratio of smallest to largest eigenvalue)


IRT PARAMETERIZATION

                                                    Two-Tailed
                    Estimate       S.E.  Est./S.E.    P-Value

 Item Discriminations

 F        BY
    U1                 1.014      0.000      0.000      1.000
    U2                 0.977      0.000      0.000      1.000
    U3                 0.965      0.000      0.000      1.000
    U4                 0.981      0.000      0.000      1.000
    U5                 0.909      0.000      0.000      1.000
    U6                 0.978      0.000      0.000      1.000
    U7                 1.076      0.000      0.000      1.000
    U8                 0.979      0.000      0.000      1.000
    U9                 1.063      0.000      0.000      1.000
    U10                0.998      0.000      0.000      1.000
    U11                1.017      0.000      0.000      1.000
    U12                1.049      0.000      0.000      1.000
    U13                1.025      0.000      0.000      1.000
    U14                0.953      0.000      0.000      1.000
    U15                0.955      0.000      0.000      1.000
    U16                1.002      0.000      0.000      1.000
    U17                0.982      0.000      0.000      1.000
    U18                1.005      0.000      0.000      1.000
    U19                1.031      0.000      0.000      1.000
    U20                0.995      0.000      0.000      1.000
    U21                0.983      0.000      0.000      1.000
    U22                1.012      0.000      0.000      1.000
    U23                1.037      0.000      0.000      1.000
    U24                0.995      0.000      0.000      1.000
    U25                0.990      0.000      0.000      1.000
    U26                1.005      0.000      0.000      1.000
    U27                1.006      0.000      0.000      1.000
    U28                1.031      0.000      0.000      1.000
    U29                1.014      0.000      0.000      1.000
    U30                1.069      0.000      0.000      1.000

 Item Difficulties
    U1$1               2.304      0.000      0.000      1.000
    U2$1               2.373      0.000      0.000      1.000
    U3$1               2.356      0.000      0.000      1.000
    U4$1               2.353      0.000      0.000      1.000
    U5$1               2.409      0.000      0.000      1.000
    U6$1               2.052      0.000      0.000      1.000
    U7$1               1.961      0.000      0.000      1.000
    U8$1               2.078      0.000      0.000      1.000
    U9$1               1.952      0.000      0.000      1.000
    U10$1              1.984      0.000      0.000      1.000
    U11$1              1.779      0.000      0.000      1.000
    U12$1              1.744      0.000      0.000      1.000
    U13$1              1.761      0.000      0.000      1.000
    U14$1              1.864      0.000      0.000      1.000
    U15$1              1.854      0.000      0.000      1.000
    U16$1              1.182      0.000      0.000      1.000
    U17$1              1.232      0.000      0.000      1.000
    U18$1              1.212      0.000      0.000      1.000
    U19$1              1.162      0.000      0.000      1.000
    U20$1              1.175      0.000      0.000      1.000
    U21$1              0.390      0.000      0.000      1.000
    U22$1              0.383      0.000      0.000      1.000
    U23$1              0.370      0.000      0.000      1.000
    U24$1              0.324      0.000      0.000      1.000
    U25$1              0.382      0.000      0.000      1.000
    U26$1             -0.003      0.000      0.000      1.000
    U27$1              0.013      0.000      0.000      1.000
    U28$1             -0.007      0.000      0.000      1.000
    U29$1             -0.013      0.000      0.000      1.000
    U30$1              0.008      0.000      0.000      1.000

 Variances
    F                  1.000      0.000      0.000      1.000


SAMPLE STATISTICS FOR ESTIMATED FACTOR SCORES


     SAMPLE STATISTICS


           Means
              F             F_SE
              ________      ________
                0.024         0.336


           Covariances
              F             F_SE
              ________      ________
 F              0.819
 F_SE          -0.071         0.008


           Correlations
              F             F_SE
              ________      ________
 F              1.000
 F_SE          -0.863         1.000


SAVEDATA INFORMATION


  Save file
    ref.dat

  Order and format of variables

    U1             F10.3
    U2             F10.3
    U3             F10.3
    U4             F10.3
    U5             F10.3
    U6             F10.3
    U7             F10.3
    U8             F10.3
    U9             F10.3
    U10            F10.3
    U11            F10.3
    U12            F10.3
    U13            F10.3
    U14            F10.3
    U15            F10.3
    U16            F10.3
    U17            F10.3
    U18            F10.3
    U19            F10.3
    U20            F10.3
    U21            F10.3
    U22            F10.3
    U23            F10.3
    U24            F10.3
    U25            F10.3
    U26            F10.3
    U27            F10.3
    U28            F10.3
    U29            F10.3
    U30            F10.3
    F              F10.3
    F_SE           F10.3
    ID             I5

  Save file format
    32F10.3 I5

  Save file record length    10000

  Save missing symbol        *


     Beginning Time:  13:11:31
        Ending Time:  13:11:33
       Elapsed Time:  00:00:02



MUTHEN & MUTHEN
3463 Stoner Ave.
Los Angeles, CA  90066

Tel: (310) 391-9971
Fax: (310) 391-8971
Web: www.StatModel.com
Support: Support@StatModel.com

Copyright (c) 1998-2021 Muthen & Muthen

. clear

. runmplus_load_savedata , out(foo.out)

. rename f f_est

. rename f_se f_est_se

. tempfile reference

. save `reference' , replace
(note: file /var/folders/lq/w3m6z0dj41ngkbbc0204xb7m0000gp/T//S_03002.000005 not found)
file /var/folders/lq/w3m6z0dj41ngkbbc0204xb7m0000gp/T//S_03002.000005 saved

Mplus factor score estimates for the focal group.

The focal group only answers questions 1-10.

. local model ""

. use `f1' , clear

. keep if focal==1
(5,000 observations deleted)

. forvalues i=1/10 {
  2.   local l`i' = svalues[`i',1]
  3.   local t=`i'+30
  4.   local t`i' = svalues[`t',1]
  5.   local model "`model' f by u`i'@`l`i'' ;"
  6.   local model "`model' [u`i'$1@`t`i''] ;"
  7. }

. runmplus u1-u10 , cat(all) idvariable(id) ///
>    estimator(wlsmv) parameterization(theta) ///
>    model(`model' f@1;) ///
>    savedata(save=fscores; file=foc.dat;) ///
>    savelog(goo)


     Mplus VERSION 8.6 (Mac)
     MUTHEN & MUTHEN

     Running input file '__000001.inp'...

     Beginning Time:  13:11:34
        Ending Time:  13:11:35
       Elapsed Time:  00:00:01

     Output saved in '__000001.out'.
THE MODEL ESTIMATION TERMINATED NORMALLY
Mplus VERSION 8.6 (Mac)
MUTHEN & MUTHEN
08/20/2021   1:11 PM

INPUT INSTRUCTIONS

  TITLE:
    Variable List -

    u1 :
    u2 :
    u3 :
    u4 :
    u5 :
    u6 :
    u7 :
    u8 :
    u9 :
    u10 :
    id :

  DATA:
    FILE = __000001.dat ;
  VARIABLE:
    NAMES =
      u1 u2 u3 u4 u5 u6 u7 u8 u9 u10 id ;
    MISSING ARE ALL (-9999) ;
    CATEGORICAL =
      all
      ;
    IDVARIABLE = id ;
  ANALYSIS:
     ESTIMATOR = wlsmv ;
     PARAMETERIZATION = theta ;
  OUTPUT:
  SAVEDATA:
  save=fscores ;
  file=foc.dat ;

  MODEL:
  f by u1@1.01409  ;
  [u1$1@2.33686]  ;
  f by u2@.97653  ;
  [u2$1@2.31682]  ;
  f by u3@.96534  ;
  [u3$1@2.27431]  ;
  f by u4@.98097  ;
  [u4$1@2.30823]  ;
  f by u5@.90888  ;
  [u5$1@2.1895]  ;
  f by u6@.97777  ;
  [u6$1@2.00644]  ;
  f by u7@1.07641  ;
  [u7$1@2.11101]  ;
  f by u8@.97867  ;
  [u8$1@2.03322]  ;
  f by u9@1.0626  ;
  [u9$1@2.07416]  ;
  f by u10@.99782  ;
  [u10$1@1.97926]  ;
  f@1 ;




INPUT READING TERMINATED NORMALLY




Variable List -

u1 :
u2 :
u3 :
u4 :
u5 :
u6 :
u7 :
u8 :
u9 :
u10 :
id :

SUMMARY OF ANALYSIS

Number of groups                                                 1
Number of observations                                        5001

Number of dependent variables                                   10
Number of independent variables                                  0
Number of continuous latent variables                            1

Observed dependent variables

  Binary and ordered categorical (ordinal)
   U1          U2          U3          U4          U5          U6
   U7          U8          U9          U10

Continuous latent variables
   F

Variables with special functions

  ID variable           ID

Estimator                                                    WLSMV
Maximum number of iterations                                  1000
Convergence criterion                                    0.500D-04
Maximum number of steepest descent iterations                   20
Maximum number of iterations for H1                           2000
Convergence criterion for H1                             0.100D-03
Parameterization                                             THETA
Link                                                        PROBIT

Input data file(s)
  __000001.dat

Input data format  FREE


SUMMARY OF DATA

     Number of missing data patterns             1


COVARIANCE COVERAGE OF DATA

Minimum covariance coverage value   0.100


     PROPORTION OF DATA PRESENT


           Covariance Coverage
              U1            U2            U3            U4            U5
              ________      ________      ________      ________      ________
 U1             1.000
 U2             1.000         1.000
 U3             1.000         1.000         1.000
 U4             1.000         1.000         1.000         1.000
 U5             1.000         1.000         1.000         1.000         1.000
 U6             1.000         1.000         1.000         1.000         1.000
 U7             1.000         1.000         1.000         1.000         1.000
 U8             1.000         1.000         1.000         1.000         1.000
 U9             1.000         1.000         1.000         1.000         1.000
 U10            1.000         1.000         1.000         1.000         1.000


           Covariance Coverage
              U6            U7            U8            U9            U10
              ________      ________      ________      ________      ________
 U6             1.000
 U7             1.000         1.000
 U8             1.000         1.000         1.000
 U9             1.000         1.000         1.000         1.000
 U10            1.000         1.000         1.000         1.000         1.000


UNIVARIATE PROPORTIONS AND COUNTS FOR CATEGORICAL VARIABLES

    U1
      Category 1    0.949         4745.000
      Category 2    0.051          256.000
    U2
      Category 1    0.948         4741.000
      Category 2    0.052          260.000
    U3
      Category 1    0.949         4748.000
      Category 2    0.051          253.000
    U4
      Category 1    0.952         4761.000
      Category 2    0.048          240.000
    U5
      Category 1    0.946         4729.000
      Category 2    0.054          272.000
    U6
      Category 1    0.920         4601.000
      Category 2    0.080          400.000
    U7
      Category 1    0.921         4606.000
      Category 2    0.079          395.000
    U8
      Category 1    0.924         4622.000
      Category 2    0.076          379.000
    U9
      Category 1    0.918         4593.000
      Category 2    0.082          408.000
    U10
      Category 1    0.917         4587.000
      Category 2    0.083          414.000



THE MODEL ESTIMATION TERMINATED NORMALLY



MODEL FIT INFORMATION

Number of Free Parameters                        0

Chi-Square Test of Model Fit

          Value                             47.798*
          Degrees of Freedom                    55
          P-Value                           0.7437

*   The chi-square value for MLM, MLMV, MLR, ULSMV, WLSM and WLSMV cannot be used
    for chi-square difference testing in the regular way.  MLM, MLR and WLSM
    chi-square difference testing is described on the Mplus website.  MLMV, WLSMV,
    and ULSMV difference testing is done using the DIFFTEST option.

RMSEA (Root Mean Square Error Of Approximation)

          Estimate                           0.000
          90 Percent C.I.                    0.000  0.007
          Probability RMSEA <= .05           1.000

CFI/TLI

          CFI                                1.000
          TLI                                1.000

Chi-Square Test of Model Fit for the Baseline Model

          Value                           6319.812
          Degrees of Freedom                    45
          P-Value                           0.0000

SRMR (Standardized Root Mean Square Residual)

          Value                              0.027

Optimum Function Value for Weighted Least-Squares Estimator

          Value                     0.45244242D-02



MODEL RESULTS

                                                    Two-Tailed
                    Estimate       S.E.  Est./S.E.    P-Value

 F        BY
    U1                 1.014      0.000    999.000    999.000
    U2                 0.977      0.000    999.000    999.000
    U3                 0.965      0.000    999.000    999.000
    U4                 0.981      0.000    999.000    999.000
    U5                 0.909      0.000    999.000    999.000
    U6                 0.978      0.000    999.000    999.000
    U7                 1.076      0.000    999.000    999.000
    U8                 0.979      0.000    999.000    999.000
    U9                 1.063      0.000    999.000    999.000
    U10                0.998      0.000    999.000    999.000

 Thresholds
    U1$1               2.337      0.000    999.000    999.000
    U2$1               2.317      0.000    999.000    999.000
    U3$1               2.274      0.000    999.000    999.000
    U4$1               2.308      0.000    999.000    999.000
    U5$1               2.190      0.000    999.000    999.000
    U6$1               2.006      0.000    999.000    999.000
    U7$1               2.111      0.000    999.000    999.000
    U8$1               2.033      0.000    999.000    999.000
    U9$1               2.074      0.000    999.000    999.000
    U10$1              1.979      0.000    999.000    999.000

 Variances
    F                  1.000      0.000    999.000    999.000


QUALITY OF NUMERICAL RESULTS

     Condition Number for the Information Matrix              0.000E+00
       (ratio of smallest to largest eigenvalue)


IRT PARAMETERIZATION

                                                    Two-Tailed
                    Estimate       S.E.  Est./S.E.    P-Value

 Item Discriminations

 F        BY
    U1                 1.014      0.000      0.000      1.000
    U2                 0.977      0.000      0.000      1.000
    U3                 0.965      0.000      0.000      1.000
    U4                 0.981      0.000      0.000      1.000
    U5                 0.909      0.000      0.000      1.000
    U6                 0.978      0.000      0.000      1.000
    U7                 1.076      0.000      0.000      1.000
    U8                 0.979      0.000      0.000      1.000
    U9                 1.063      0.000      0.000      1.000
    U10                0.998      0.000      0.000      1.000

 Item Difficulties
    U1$1               2.304      0.000      0.000      1.000
    U2$1               2.373      0.000      0.000      1.000
    U3$1               2.356      0.000      0.000      1.000
    U4$1               2.353      0.000      0.000      1.000
    U5$1               2.409      0.000      0.000      1.000
    U6$1               2.052      0.000      0.000      1.000
    U7$1               1.961      0.000      0.000      1.000
    U8$1               2.078      0.000      0.000      1.000
    U9$1               1.952      0.000      0.000      1.000
    U10$1              1.984      0.000      0.000      1.000

 Variances
    F                  1.000      0.000      0.000      1.000


SAMPLE STATISTICS FOR ESTIMATED FACTOR SCORES


     SAMPLE STATISTICS


           Means
              F             F_SE
              ________      ________
                0.154         0.697


           Covariances
              F             F_SE
              ________      ________
 F              0.419
 F_SE          -0.100         0.026


           Correlations
              F             F_SE
              ________      ________
 F              1.000
 F_SE          -0.966         1.000


SAVEDATA INFORMATION


  Save file
    foc.dat

  Order and format of variables

    U1             F10.3
    U2             F10.3
    U3             F10.3
    U4             F10.3
    U5             F10.3
    U6             F10.3
    U7             F10.3
    U8             F10.3
    U9             F10.3
    U10            F10.3
    F              F10.3
    F_SE           F10.3
    ID             I6

  Save file format
    12F10.3 I6

  Save file record length    10000

  Save missing symbol        *


     Beginning Time:  13:11:34
        Ending Time:  13:11:35
       Elapsed Time:  00:00:01



MUTHEN & MUTHEN
3463 Stoner Ave.
Los Angeles, CA  90066

Tel: (310) 391-9971
Fax: (310) 391-8971
Web: www.StatModel.com
Support: Support@StatModel.com

Copyright (c) 1998-2021 Muthen & Muthen

. clear

. runmplus_load_savedata , out(goo.out)

. rename f f_est

. rename f_se f_est_se

. tempfile focal

. save `focal' , replace
(note: file /var/folders/lq/w3m6z0dj41ngkbbc0204xb7m0000gp/T//S_03002.000006 not found)
file /var/folders/lq/w3m6z0dj41ngkbbc0204xb7m0000gp/T//S_03002.000006 saved

Match files back together

. use `focal'

. append using `reference'

. merge 1:1 id using `f1' , nogen
(note: variable u1 was byte, now float to accommodate using data's values)
(note: variable u2 was byte, now float to accommodate using data's values)
(note: variable u3 was byte, now float to accommodate using data's values)
(note: variable u4 was byte, now float to accommodate using data's values)
(note: variable u5 was byte, now float to accommodate using data's values)
(note: variable u6 was byte, now float to accommodate using data's values)
(note: variable u7 was byte, now float to accommodate using data's values)
(note: variable u8 was byte, now float to accommodate using data's values)
(note: variable u9 was byte, now float to accommodate using data's values)
(note: variable u10 was byte, now float to accommodate using data's values)
(note: variable u11 was byte, now float to accommodate using data's values)
(note: variable u12 was byte, now float to accommodate using data's values)
(note: variable u13 was byte, now float to accommodate using data's values)
(note: variable u14 was byte, now float to accommodate using data's values)
(note: variable u15 was byte, now float to accommodate using data's values)
(note: variable u16 was byte, now float to accommodate using data's values)
(note: variable u17 was byte, now float to accommodate using data's values)
(note: variable u18 was byte, now float to accommodate using data's values)
(note: variable u19 was byte, now float to accommodate using data's values)
(note: variable u20 was byte, now float to accommodate using data's values)
(note: variable u21 was byte, now float to accommodate using data's values)
(note: variable u22 was byte, now float to accommodate using data's values)
(note: variable u23 was byte, now float to accommodate using data's values)
(note: variable u24 was byte, now float to accommodate using data's values)
(note: variable u25 was byte, now float to accommodate using data's values)
(note: variable u26 was byte, now float to accommodate using data's values)
(note: variable u27 was byte, now float to accommodate using data's values)
(note: variable u28 was byte, now float to accommodate using data's values)
(note: variable u29 was byte, now float to accommodate using data's values)
(note: variable u30 was byte, now float to accommodate using data's values)
(note: variable id was int, now float to accommodate using data's values)

    Result                           # of obs.
    ─────────────────────────────────────────
    not matched                             0
    matched                            10,001  
    ─────────────────────────────────────────

. su

    Variable │        Obs        Mean    Std. Dev.       Min        Max
─────────────┼─────────────────────────────────────────────────────────
          u1 │     10,001     .050395    .2187695          0          1
          u2 │     10,001    .0486951    .2152407          0          1
          u3 │     10,001    .0508949    .2197941          0          1
          u4 │     10,001     .049695     .217325          0          1
          u5 │     10,001    .0525947    .2232342          0          1
─────────────┼─────────────────────────────────────────────────────────
          u6 │     10,001    .0756924    .2645186          0          1
          u7 │     10,001    .0753925    .2640368          0          1
          u8 │     10,001    .0730927    .2603016          0          1
          u9 │     10,001    .0775922    .2675422          0          1
         u10 │     10,001    .0805919     .272221          0          1
─────────────┼─────────────────────────────────────────────────────────
       f_est │     10,001    .0889216    .7894857     -1.373      3.324
    f_est_se │     10,001    .5163873    .2227443       .233       .801
          id │     10,001        5001    2887.184          1      10001
         u11 │      5,000       .1064    .3083797          0          1
         u12 │      5,000       .1044    .3058093          0          1
─────────────┼─────────────────────────────────────────────────────────
         u13 │      5,000       .1008    .3010938          0          1
         u14 │      5,000        .101    .3013589          0          1
         u15 │      5,000       .1002    .3002965          0          1
         u16 │      5,000       .2066    .4049064          0          1
         u17 │      5,000       .1966     .397467          0          1
─────────────┼─────────────────────────────────────────────────────────
         u18 │      5,000       .1954     .396548          0          1
         u19 │      5,000       .1992    .3994387          0          1
         u20 │      5,000       .2054     .404034          0          1
         u21 │      5,000       .3978    .4894927          0          1
         u22 │      5,000       .3952    .4889425          0          1
─────────────┼─────────────────────────────────────────────────────────
         u23 │      5,000       .3896    .4877083          0          1
         u24 │      5,000        .407     .491324          0          1
         u25 │      5,000        .392    .4882455          0          1
         u26 │      5,000       .4938    .5000116          0          1
         u27 │      5,000        .497     .500041          0          1
─────────────┼─────────────────────────────────────────────────────────
         u28 │      5,000       .5012    .5000486          0          1
         u29 │      5,000       .4966    .5000384          0          1
         u30 │      5,000       .4938    .5000116          0          1
           q │     10,001    .0129183    .9931195  -3.581353   3.495501
       focal │     10,001      .50005     .500025          0          1
─────────────┼─────────────────────────────────────────────────────────
    sumscore │     10,001    6.623538    5.817109          0         30

Pyramid plot of factor score estimate by group

(file /Users/rnj/Dropbox/Work/Syntax/pyramid.png written in PNG format)

Look for DIF using regression approach, but, use the known true theta.

See how the type-I error rate is reasonably close to the nominal 5% level. A type-I error is concluding that an item has DIF when it does not have DIF (we know they all do not have DIF because that is how we generated them). Let’s say any finding of a significant effect of i.focal or focal#c.q is a type-I error.

. forvalues i=1/10 {
  2.   logit u`i' i.focal##c.q
  3. }

Iteration 0:   log likelihood = -1996.9651  
Iteration 1:   log likelihood = -1605.5008  
Iteration 2:   log likelihood = -1355.9574  
Iteration 3:   log likelihood = -1345.3758  
Iteration 4:   log likelihood =   -1345.33  
Iteration 5:   log likelihood =   -1345.33  

Logistic regression                             Number of obs     =     10,001
                                                LR chi2(3)        =    1303.27
                                                Prob > chi2       =     0.0000
Log likelihood =   -1345.33                     Pseudo R2         =     0.3263

─────────────┬────────────────────────────────────────────────────────────────
          u1 │      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
─────────────┼────────────────────────────────────────────────────────────────
     1.focal │  -.0541798   .2109964    -0.26   0.797    -.4677252    .3593656
           q │   2.041188   .1043095    19.57   0.000     1.836745    2.245631
             │
   focal#c.q │
          1  │   .0612937   .1472744     0.42   0.677    -.2273588    .3499462
             │
       _cons │  -4.475801   .1481821   -30.20   0.000    -4.766232   -4.185369
─────────────┴────────────────────────────────────────────────────────────────

Iteration 0:   log likelihood = -1946.7453  
Iteration 1:   log likelihood = -1583.1608  
Iteration 2:   log likelihood = -1350.4161  
Iteration 3:   log likelihood = -1341.2978  
Iteration 4:   log likelihood = -1341.2495  
Iteration 5:   log likelihood = -1341.2495  

Logistic regression                             Number of obs     =     10,001
                                                LR chi2(3)        =    1210.99
                                                Prob > chi2       =     0.0000
Log likelihood = -1341.2495                     Pseudo R2         =     0.3110

─────────────┬────────────────────────────────────────────────────────────────
          u2 │      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
─────────────┼────────────────────────────────────────────────────────────────
     1.focal │    .403318   .2094668     1.93   0.054    -.0072293    .8138653
           q │   2.098197    .109934    19.09   0.000     1.882731    2.313664
             │
   focal#c.q │
          1  │  -.1949534   .1458075    -1.34   0.181    -.4807308    .0908241
             │
       _cons │  -4.667082   .1597794   -29.21   0.000    -4.980244    -4.35392
─────────────┴────────────────────────────────────────────────────────────────

Iteration 0:   log likelihood = -2011.6198  
Iteration 1:   log likelihood = -1637.1294  
Iteration 2:   log likelihood = -1422.7188  
Iteration 3:   log likelihood = -1415.6532  
Iteration 4:   log likelihood = -1415.6175  
Iteration 5:   log likelihood = -1415.6175  

Logistic regression                             Number of obs     =     10,001
                                                LR chi2(3)        =    1192.00
                                                Prob > chi2       =     0.0000
Log likelihood = -1415.6175                     Pseudo R2         =     0.2963

─────────────┬────────────────────────────────────────────────────────────────
          u3 │      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
─────────────┼────────────────────────────────────────────────────────────────
     1.focal │   .1930252   .1955539     0.99   0.324    -.1902533    .5763037
           q │   2.015173   .1021407    19.73   0.000     1.814981    2.215365
             │
   focal#c.q │
          1  │   -.188861   .1387559    -1.36   0.173    -.4608175    .0830956
             │
       _cons │  -4.400949   .1438351   -30.60   0.000    -4.682861   -4.119037
─────────────┴────────────────────────────────────────────────────────────────

Iteration 0:   log likelihood = -1976.3606  
Iteration 1:   log likelihood = -1603.2029  
Iteration 2:   log likelihood = -1372.5586  
Iteration 3:   log likelihood = -1364.0271  
Iteration 4:   log likelihood =   -1363.99  
Iteration 5:   log likelihood =   -1363.99  

Logistic regression                             Number of obs     =     10,001
                                                LR chi2(3)        =    1224.74
                                                Prob > chi2       =     0.0000
Log likelihood =   -1363.99                     Pseudo R2         =     0.3098

─────────────┬────────────────────────────────────────────────────────────────
          u4 │      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
─────────────┼────────────────────────────────────────────────────────────────
     1.focal │   .0328805   .2044798     0.16   0.872    -.3678925    .4336535
           q │   2.047888   .1033271    19.82   0.000     1.845371    2.250405
             │
   focal#c.q │
          1  │  -.1178829   .1434274    -0.82   0.411    -.3989955    .1632297
             │
       _cons │  -4.435502   .1457816   -30.43   0.000    -4.721229   -4.149776
─────────────┴────────────────────────────────────────────────────────────────

Iteration 0:   log likelihood = -2061.0617  
Iteration 1:   log likelihood = -1683.1117  
Iteration 2:   log likelihood = -1482.4644  
Iteration 3:   log likelihood = -1476.5498  
Iteration 4:   log likelihood =  -1476.512  
Iteration 5:   log likelihood =  -1476.512  

Logistic regression                             Number of obs     =     10,001
                                                LR chi2(3)        =    1169.10
                                                Prob > chi2       =     0.0000
Log likelihood =  -1476.512                     Pseudo R2         =     0.2836

─────────────┬────────────────────────────────────────────────────────────────
          u5 │      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
─────────────┼────────────────────────────────────────────────────────────────
     1.focal │   .2780871   .1865839     1.49   0.136    -.0876106    .6437848
           q │    1.94329   .0995694    19.52   0.000     1.748138    2.138443
             │
   focal#c.q │
          1  │  -.1744182    .133971    -1.30   0.193    -.4369966    .0881602
             │
       _cons │  -4.324749    .139563   -30.99   0.000    -4.598287   -4.051211
─────────────┴────────────────────────────────────────────────────────────────

Iteration 0:   log likelihood = -2681.4743  
Iteration 1:   log likelihood = -2110.5374  
Iteration 2:   log likelihood = -1886.0808  
Iteration 3:   log likelihood = -1879.1908  
Iteration 4:   log likelihood = -1879.1587  
Iteration 5:   log likelihood = -1879.1587  

Logistic regression                             Number of obs     =     10,001
                                                LR chi2(3)        =    1604.63
                                                Prob > chi2       =     0.0000
Log likelihood = -1879.1587                     Pseudo R2         =     0.2992

─────────────┬────────────────────────────────────────────────────────────────
          u6 │      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
─────────────┼────────────────────────────────────────────────────────────────
     1.focal │   .2377681   .1556885     1.53   0.127    -.0673757     .542912
           q │    1.94666   .0889273    21.89   0.000     1.772366    2.120955
             │
   focal#c.q │
          1  │   -.084265    .120796    -0.70   0.485    -.3210207    .1524908
             │
       _cons │  -3.861973   .1156741   -33.39   0.000     -4.08869   -3.635256
─────────────┴────────────────────────────────────────────────────────────────

Iteration 0:   log likelihood = -2673.9607  
Iteration 1:   log likelihood = -2074.9823  
Iteration 2:   log likelihood = -1821.6572  
Iteration 3:   log likelihood = -1812.1294  
Iteration 4:   log likelihood =  -1812.093  
Iteration 5:   log likelihood =  -1812.093  

Logistic regression                             Number of obs     =     10,001
                                                LR chi2(3)        =    1723.74
                                                Prob > chi2       =     0.0000
Log likelihood =  -1812.093                     Pseudo R2         =     0.3223

─────────────┬────────────────────────────────────────────────────────────────
          u7 │      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
─────────────┼────────────────────────────────────────────────────────────────
     1.focal │  -.1332035   .1640321    -0.81   0.417    -.4547004    .1882934
           q │   1.902192   .0872081    21.81   0.000     1.731267    2.073116
             │
   focal#c.q │
          1  │    .235329   .1264615     1.86   0.063    -.0125309    .4831889
             │
       _cons │  -3.805852   .1129382   -33.70   0.000    -4.027207   -3.584497
─────────────┴────────────────────────────────────────────────────────────────

Iteration 0:   log likelihood = -2615.9245  
Iteration 1:   log likelihood =  -2067.475  
Iteration 2:   log likelihood = -1848.0155  
Iteration 3:   log likelihood = -1841.4272  
Iteration 4:   log likelihood = -1841.3952  
Iteration 5:   log likelihood = -1841.3952  

Logistic regression                             Number of obs     =     10,001
                                                LR chi2(3)        =    1549.06
                                                Prob > chi2       =     0.0000
Log likelihood = -1841.3952                     Pseudo R2         =     0.2961

─────────────┬────────────────────────────────────────────────────────────────
          u8 │      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
─────────────┼────────────────────────────────────────────────────────────────
     1.focal │     .23617   .1579182     1.50   0.135     -.073344    .5456841
           q │   1.960847   .0898478    21.82   0.000     1.784748    2.136945
             │
   focal#c.q │
          1  │  -.1357641    .121616    -1.12   0.264     -.374127    .1025989
             │
       _cons │  -3.897458   .1173793   -33.20   0.000    -4.127518   -3.667399
─────────────┴────────────────────────────────────────────────────────────────

Iteration 0:   log likelihood = -2728.7632  
Iteration 1:   log likelihood = -2111.5809  
Iteration 2:   log likelihood = -1858.3102  
Iteration 3:   log likelihood =  -1849.061  
Iteration 4:   log likelihood = -1849.0264  
Iteration 5:   log likelihood = -1849.0264  

Logistic regression                             Number of obs     =     10,001
                                                LR chi2(3)        =    1759.47
                                                Prob > chi2       =     0.0000
Log likelihood = -1849.0264                     Pseudo R2         =     0.3224

─────────────┬────────────────────────────────────────────────────────────────
          u9 │      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
─────────────┼────────────────────────────────────────────────────────────────
     1.focal │    -.01748   .1612107    -0.11   0.914    -.3334472    .2984871
           q │   1.947741    .088081    22.11   0.000     1.775105    2.120377
             │
   focal#c.q │
          1  │    .142265   .1251908     1.14   0.256    -.1031045    .3876344
             │
       _cons │   -3.82012   .1137469   -33.58   0.000     -4.04306    -3.59718
─────────────┴────────────────────────────────────────────────────────────────

Iteration 0:   log likelihood = -2802.4074  
Iteration 1:   log likelihood = -2186.6497  
Iteration 2:   log likelihood = -1957.2862  
Iteration 3:   log likelihood = -1950.4299  
Iteration 4:   log likelihood = -1950.3994  
Iteration 5:   log likelihood = -1950.3994  

Logistic regression                             Number of obs     =     10,001
                                                LR chi2(3)        =    1704.02
                                                Prob > chi2       =     0.0000
Log likelihood = -1950.3994                     Pseudo R2         =     0.3040

─────────────┬────────────────────────────────────────────────────────────────
         u10 │      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
─────────────┼────────────────────────────────────────────────────────────────
     1.focal │   .0136848   .1509607     0.09   0.928    -.2821927    .3095622
           q │    1.89887   .0846118    22.44   0.000     1.733034    2.064706
             │
   focal#c.q │
          1  │   .0495596   .1190077     0.42   0.677    -.1836912    .2828104
             │
       _cons │  -3.678189   .1072464   -34.30   0.000    -3.888388    -3.46799
─────────────┴────────────────────────────────────────────────────────────────

Now using the estimated factor scores

. forvalues i=1/10 {
  2.  logit u`i' i.focal##c.f_est
  3. }

Iteration 0:   log likelihood = -1996.9651  
Iteration 1:   log likelihood = -1444.0276  
Iteration 2:   log likelihood = -1249.4473  
Iteration 3:   log likelihood =  -1238.375  
Iteration 4:   log likelihood = -1238.3403  
Iteration 5:   log likelihood = -1238.3403  

Logistic regression                             Number of obs     =     10,001
                                                LR chi2(3)        =    1517.25
                                                Prob > chi2       =     0.0000
Log likelihood = -1238.3403                     Pseudo R2         =     0.3799

──────────────┬────────────────────────────────────────────────────────────────
           u1 │      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
──────────────┼────────────────────────────────────────────────────────────────
      1.focal │  -.4609363   .2309965    -2.00   0.046    -.9136811   -.0081915
        f_est │   2.159441   .1090277    19.81   0.000      1.94575    2.373131
              │
focal#c.f_est │
           1  │   .5488406   .1662254     3.30   0.001     .2230448    .8746364
              │
        _cons │  -4.529971   .1520203   -29.80   0.000    -4.827925   -4.232017
──────────────┴────────────────────────────────────────────────────────────────

Iteration 0:   log likelihood = -1946.7453  
Iteration 1:   log likelihood = -1423.1899  
Iteration 2:   log likelihood = -1239.7219  
Iteration 3:   log likelihood =  -1226.424  
Iteration 4:   log likelihood =  -1226.338  
Iteration 5:   log likelihood = -1226.3379  

Logistic regression                             Number of obs     =     10,001
                                                LR chi2(3)        =    1440.81
                                                Prob > chi2       =     0.0000
Log likelihood = -1226.3379                     Pseudo R2         =     0.3701

──────────────┬────────────────────────────────────────────────────────────────
           u2 │      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
──────────────┼────────────────────────────────────────────────────────────────
      1.focal │   .0987777   .2287411     0.43   0.666    -.3495467    .5471021
        f_est │   2.273433   .1175636    19.34   0.000     2.043013    2.503854
              │
focal#c.f_est │
           1  │   .2101677   .1634829     1.29   0.199    -.1102529    .5305884
              │
        _cons │  -4.793589   .1684611   -28.46   0.000    -5.123767   -4.463412
──────────────┴────────────────────────────────────────────────────────────────

Iteration 0:   log likelihood = -2011.6198  
Iteration 1:   log likelihood = -1967.4926  
Iteration 2:   log likelihood = -1347.4157  
Iteration 3:   log likelihood = -1278.2212  
Iteration 4:   log likelihood = -1274.8067  
Iteration 5:   log likelihood = -1274.8009  
Iteration 6:   log likelihood = -1274.8009  

Logistic regression                             Number of obs     =     10,001
                                                LR chi2(3)        =    1473.64
                                                Prob > chi2       =     0.0000
Log likelihood = -1274.8009                     Pseudo R2         =     0.3663

──────────────┬────────────────────────────────────────────────────────────────
           u3 │      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
──────────────┼────────────────────────────────────────────────────────────────
      1.focal │  -.0842917    .220735    -0.38   0.703    -.5169243    .3483409
        f_est │   2.266778   .1123715    20.17   0.000     2.046534    2.487022
              │
focal#c.f_est │
           1  │    .187769   .1596139     1.18   0.239    -.1250685    .5006064
              │
        _cons │  -4.617136   .1570002   -29.41   0.000    -4.924851   -4.309421
──────────────┴────────────────────────────────────────────────────────────────

Iteration 0:   log likelihood = -1976.3606  
Iteration 1:   log likelihood = -1935.8175  
Iteration 2:   log likelihood = -1329.1271  
Iteration 3:   log likelihood = -1269.8037  
Iteration 4:   log likelihood = -1267.2189  
Iteration 5:   log likelihood = -1267.2133  
Iteration 6:   log likelihood = -1267.2133  

Logistic regression                             Number of obs     =     10,001
                                                LR chi2(3)        =    1418.29
                                                Prob > chi2       =     0.0000
Log likelihood = -1267.2133                     Pseudo R2         =     0.3588

──────────────┬────────────────────────────────────────────────────────────────
           u4 │      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
──────────────┼────────────────────────────────────────────────────────────────
      1.focal │  -.2849609    .220362    -1.29   0.196    -.7168625    .1469408
        f_est │   2.180674    .108545    20.09   0.000      1.96793    2.393419
              │
focal#c.f_est │
           1  │   .2834307   .1588539     1.78   0.074    -.0279172    .5947787
              │
        _cons │  -4.506576   .1505061   -29.94   0.000    -4.801563   -4.211589
──────────────┴────────────────────────────────────────────────────────────────

Iteration 0:   log likelihood = -2061.0617  
Iteration 1:   log likelihood = -2008.4219  
Iteration 2:   log likelihood = -1434.7079  
Iteration 3:   log likelihood = -1371.8632  
Iteration 4:   log likelihood = -1369.3595  
Iteration 5:   log likelihood = -1369.3527  
Iteration 6:   log likelihood = -1369.3527  

Logistic regression                             Number of obs     =     10,001
                                                LR chi2(3)        =    1383.42
                                                Prob > chi2       =     0.0000
Log likelihood = -1369.3527                     Pseudo R2         =     0.3356

──────────────┬────────────────────────────────────────────────────────────────
           u5 │      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
──────────────┼────────────────────────────────────────────────────────────────
      1.focal │  -.0038278   .2001354    -0.02   0.985    -.3960859    .3884304
        f_est │   2.088623   .1051992    19.85   0.000     1.882436    2.294809
              │
focal#c.f_est │
           1  │   .2117394   .1477552     1.43   0.152    -.0778555    .5013342
              │
        _cons │  -4.412121   .1450765   -30.41   0.000    -4.696466   -4.127776
──────────────┴────────────────────────────────────────────────────────────────

Iteration 0:   log likelihood = -2681.4743  
Iteration 1:   log likelihood = -2302.8295  
Iteration 2:   log likelihood = -1763.2541  
Iteration 3:   log likelihood = -1694.9643  
Iteration 4:   log likelihood = -1693.3586  
Iteration 5:   log likelihood = -1693.3546  
Iteration 6:   log likelihood = -1693.3546  

Logistic regression                             Number of obs     =     10,001
                                                LR chi2(3)        =    1976.24
                                                Prob > chi2       =     0.0000
Log likelihood = -1693.3546                     Pseudo R2         =     0.3685

──────────────┬────────────────────────────────────────────────────────────────
           u6 │      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
──────────────┼────────────────────────────────────────────────────────────────
      1.focal │  -.2994474   .1720579    -1.74   0.082    -.6366747    .0377799
        f_est │   2.037892   .0916184    22.24   0.000     1.858323    2.217461
              │
focal#c.f_est │
           1  │    .609999   .1388094     4.39   0.000     .3379376    .8820603
              │
        _cons │  -3.881219    .116727   -33.25   0.000    -4.109999   -3.652438
──────────────┴────────────────────────────────────────────────────────────────

Iteration 0:   log likelihood = -2673.9607  
Iteration 1:   log likelihood = -2268.9386  
Iteration 2:   log likelihood = -1681.1379  
Iteration 3:   log likelihood = -1594.2697  
Iteration 4:   log likelihood = -1591.1527  
Iteration 5:   log likelihood = -1591.1494  
Iteration 6:   log likelihood = -1591.1494  

Logistic regression                             Number of obs     =     10,001
                                                LR chi2(3)        =    2165.62
                                                Prob > chi2       =     0.0000
Log likelihood = -1591.1494                     Pseudo R2         =     0.4049

──────────────┬────────────────────────────────────────────────────────────────
           u7 │      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
──────────────┼────────────────────────────────────────────────────────────────
      1.focal │  -.4616133   .1906904    -2.42   0.015    -.8353596    -.087867
        f_est │   2.187211   .0969439    22.56   0.000     1.997205    2.377218
              │
focal#c.f_est │
           1  │   .7378798   .1523001     4.84   0.000     .4393771    1.036383
              │
        _cons │  -4.035244    .124554   -32.40   0.000    -4.279365   -3.791123
──────────────┴────────────────────────────────────────────────────────────────

Iteration 0:   log likelihood = -2615.9245  
Iteration 1:   log likelihood =  -2255.965  
Iteration 2:   log likelihood = -1712.5828  
Iteration 3:   log likelihood =   -1653.05  
Iteration 4:   log likelihood = -1651.7968  
Iteration 5:   log likelihood = -1651.7927  
Iteration 6:   log likelihood = -1651.7927  

Logistic regression                             Number of obs     =     10,001
                                                LR chi2(3)        =    1928.26
                                                Prob > chi2       =     0.0000
Log likelihood = -1651.7927                     Pseudo R2         =     0.3686

──────────────┬────────────────────────────────────────────────────────────────
           u8 │      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
──────────────┼────────────────────────────────────────────────────────────────
      1.focal │  -.0590926   .1763326    -0.34   0.738    -.4046982    .2865129
        f_est │   2.191298   .0977474    22.42   0.000     1.999717     2.38288
              │
focal#c.f_est │
           1  │    .317793   .1401422     2.27   0.023     .0431194    .5924667
              │
        _cons │  -4.068907   .1262405   -32.23   0.000    -4.316334    -3.82148
──────────────┴────────────────────────────────────────────────────────────────

Iteration 0:   log likelihood = -2728.7632  
Iteration 1:   log likelihood = -2290.5504  
Iteration 2:   log likelihood = -1723.5771  
Iteration 3:   log likelihood = -1647.4923  
Iteration 4:   log likelihood = -1645.4327  
Iteration 5:   log likelihood = -1645.4292  
Iteration 6:   log likelihood = -1645.4292  

Logistic regression                             Number of obs     =     10,001
                                                LR chi2(3)        =    2166.67
                                                Prob > chi2       =     0.0000
Log likelihood = -1645.4292                     Pseudo R2         =     0.3970

──────────────┬────────────────────────────────────────────────────────────────
           u9 │      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
──────────────┼────────────────────────────────────────────────────────────────
      1.focal │  -.2297291   .1820959    -1.26   0.207    -.5866305    .1271723
        f_est │   2.233943   .0979127    22.82   0.000     2.042037    2.425848
              │
focal#c.f_est │
           1  │   .5423606   .1466388     3.70   0.000     .2549539    .8297674
              │
        _cons │  -4.049666   .1253515   -32.31   0.000    -4.295351   -3.803982
──────────────┴────────────────────────────────────────────────────────────────

Iteration 0:   log likelihood = -2802.4074  
Iteration 1:   log likelihood = -2335.8654  
Iteration 2:   log likelihood = -1822.9185  
Iteration 3:   log likelihood =  -1771.462  
Iteration 4:   log likelihood = -1770.5868  
Iteration 5:   log likelihood = -1770.5843  
Iteration 6:   log likelihood = -1770.5843  

Logistic regression                             Number of obs     =     10,001
                                                LR chi2(3)        =    2063.65
                                                Prob > chi2       =     0.0000
Log likelihood = -1770.5843                     Pseudo R2         =     0.3682

──────────────┬────────────────────────────────────────────────────────────────
          u10 │      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
──────────────┼────────────────────────────────────────────────────────────────
      1.focal │  -.2905401   .1655492    -1.76   0.079    -.6150105    .0339304
        f_est │   2.080355   .0902621    23.05   0.000     1.903445    2.257266
              │
focal#c.f_est │
           1  │   .5283475   .1357359     3.89   0.000       .26231    .7943851
              │
        _cons │  -3.790544   .1126596   -33.65   0.000    -4.011353   -3.569735
──────────────┴────────────────────────────────────────────────────────────────

6 of 10 items have DIF.

save working file

. tempfile f2

. save `f2' , replace
(note: file /var/folders/lq/w3m6z0dj41ngkbbc0204xb7m0000gp/T//S_03002.000007 not found)
file /var/folders/lq/w3m6z0dj41ngkbbc0204xb7m0000gp/T//S_03002.000007 saved

Can the situation be rescued with Bayes factor score estimates?

. local model ""

. use `f1' , clear

. keep if focal==1
(5,000 observations deleted)

. forvalues i=1/10 {
  2.   local l`i' = svalues[`i',1]
  3.   local t=`i'+30
  4.   local t`i' = svalues[`t',1]
  5.   local model "`model' f by u`i'@`l`i'' ;"
  6.   local model "`model' [u`i'$1@`t`i''] ;"
  7. }

. runmplus u1-u10 , cat(all) idvariable(id) ///
>    estimator(bayes) ///
>    model(`model' f@1;) ///
>    savedata(save=fscores(1 1); file=foc_bayes.dat;) ///
>    savelog(hoo)


     Mplus VERSION 8.6 (Mac)
     MUTHEN & MUTHEN

     Running input file '__000001.inp'...


   TECHNICAL 8 OUTPUT FOR BAYES ESTIMATION

                     POTENTIAL       PARAMETER WITH           TOTAL
     ITERATION    SCALE REDUCTION      HIGHEST PSR     TIME    TIME
     100              1.000               0            1.09     1.1

   DUE TO SAVE=FSCORES REQUEST IN THE SAVEDATA COMMAND, FACTOR SCORES
   (PLAUSIBLE VALUES) ARE OBTAINED BY MULTIPLE IMPUTATIONS.  THE
   NUMBER OF IMPUTATIONS CAN BE CHANGED WITH THE SAVE=FSCORES REQUEST.

     GENERATING IMPUTATION 1

     WRITING FACTOR SCORES (PLAUSIBLE VALUES) TO SAVEDATA AND/OR PLOT FILE

     Beginning Time:  13:11:40
        Ending Time:  13:11:41
       Elapsed Time:  00:00:01

     Output saved in '__000001.out'.
Mplus VERSION 8.6 (Mac)
MUTHEN & MUTHEN
08/20/2021   1:11 PM

INPUT INSTRUCTIONS

  TITLE:
    Variable List -

    u1 :
    u2 :
    u3 :
    u4 :
    u5 :
    u6 :
    u7 :
    u8 :
    u9 :
    u10 :
    id :

  DATA:
    FILE = __000001.dat ;
  VARIABLE:
    NAMES =
      u1 u2 u3 u4 u5 u6 u7 u8 u9 u10 id ;
    MISSING ARE ALL (-9999) ;
    CATEGORICAL =
      all
      ;
    IDVARIABLE = id ;
  ANALYSIS:
     ESTIMATOR = bayes ;
  OUTPUT:
  SAVEDATA:
  save=fscores(1 1) ;
  file=foc_bayes.dat ;

  MODEL:
  f by u1@1.01409  ;
  [u1$1@2.33686]  ;
  f by u2@.97653  ;
  [u2$1@2.31682]  ;
  f by u3@.96534  ;
  [u3$1@2.27431]  ;
  f by u4@.98097  ;
  [u4$1@2.30823]  ;
  f by u5@.90888  ;
  [u5$1@2.1895]  ;
  f by u6@.97777  ;
  [u6$1@2.00644]  ;
  f by u7@1.07641  ;
  [u7$1@2.11101]  ;
  f by u8@.97867  ;
  [u8$1@2.03322]  ;
  f by u9@1.0626  ;
  [u9$1@2.07416]  ;
  f by u10@.99782  ;
  [u10$1@1.97926]  ;
  f@1 ;




INPUT READING TERMINATED NORMALLY




Variable List -

u1 :
u2 :
u3 :
u4 :
u5 :
u6 :
u7 :
u8 :
u9 :
u10 :
id :

SUMMARY OF ANALYSIS

Number of groups                                                 1
Number of observations                                        5001

Number of dependent variables                                   10
Number of independent variables                                  0
Number of continuous latent variables                            1

Observed dependent variables

  Binary and ordered categorical (ordinal)
   U1          U2          U3          U4          U5          U6
   U7          U8          U9          U10

Continuous latent variables
   F

Variables with special functions

  ID variable           ID

Estimator                                                    BAYES
Specifications for Bayesian Estimation
  Point estimate                                            MEDIAN
  Number of Markov chain Monte Carlo (MCMC) chains               2
  Random seed for the first chain                                0
  Starting value information                           UNPERTURBED
  Algorithm used for Markov chain Monte Carlo           GIBBS(PX1)
  Convergence criterion                                  0.500D-01
  Maximum number of iterations                               50000
  K-th iteration used for thinning                               1
Link                                                        PROBIT
Specifications for Bayes Factor Score Estimation
  Number of imputed data sets                                    1
  Iteration intervals for thinning                               1

Input data file(s)
  __000001.dat
Input data format  FREE


SUMMARY OF DATA



SUMMARY OF MISSING DATA PATTERNS

     Number of missing data patterns             1


     MISSING DATA PATTERNS (x = not missing)

           1
 U1        x
 U2        x
 U3        x
 U4        x
 U5        x
 U6        x
 U7        x
 U8        x
 U9        x
 U10       x


     MISSING DATA PATTERN FREQUENCIES

    Pattern   Frequency
          1        5001


COVARIANCE COVERAGE OF DATA

Minimum covariance coverage value   0.100


     PROPORTION OF DATA PRESENT


           Covariance Coverage
              U1            U2            U3            U4            U5
              ________      ________      ________      ________      ________
 U1             1.000
 U2             1.000         1.000
 U3             1.000         1.000         1.000
 U4             1.000         1.000         1.000         1.000
 U5             1.000         1.000         1.000         1.000         1.000
 U6             1.000         1.000         1.000         1.000         1.000
 U7             1.000         1.000         1.000         1.000         1.000
 U8             1.000         1.000         1.000         1.000         1.000
 U9             1.000         1.000         1.000         1.000         1.000
 U10            1.000         1.000         1.000         1.000         1.000


           Covariance Coverage
              U6            U7            U8            U9            U10
              ________      ________      ________      ________      ________
 U6             1.000
 U7             1.000         1.000
 U8             1.000         1.000         1.000
 U9             1.000         1.000         1.000         1.000
 U10            1.000         1.000         1.000         1.000         1.000


UNIVARIATE PROPORTIONS AND COUNTS FOR CATEGORICAL VARIABLES

    U1
      Category 1    0.949         4745.000
      Category 2    0.051          256.000
    U2
      Category 1    0.948         4741.000
      Category 2    0.052          260.000
    U3
      Category 1    0.949         4748.000
      Category 2    0.051          253.000
    U4
      Category 1    0.952         4761.000
      Category 2    0.048          240.000
    U5
      Category 1    0.946         4729.000
      Category 2    0.054          272.000
    U6
      Category 1    0.920         4601.000
      Category 2    0.080          400.000
    U7
      Category 1    0.921         4606.000
      Category 2    0.079          395.000
    U8
      Category 1    0.924         4622.000
      Category 2    0.076          379.000
    U9
      Category 1    0.918         4593.000
      Category 2    0.082          408.000
    U10
      Category 1    0.917         4587.000
      Category 2    0.083          414.000



THE MODEL ESTIMATION TERMINATED NORMALLY

     USE THE FBITERATIONS OPTION TO INCREASE THE NUMBER OF ITERATIONS BY A FACTOR
     OF AT LEAST TWO TO CHECK CONVERGENCE AND THAT THE PSR VALUE DOES NOT INCREASE.



MODEL FIT INFORMATION

Number of Free Parameters                               0

Bayesian Posterior Predictive Checking using Chi-Square

          95% Confidence Interval for the Difference Between
          the Observed and the Replicated Chi-Square Values

                                -31.736            14.981

          Posterior Predictive P-Value              0.667



MODEL RESULTS

                                Posterior  One-Tailed         95% C.I.
                    Estimate       S.D.      P-Value   Lower 2.5%  Upper 2.5%  Significance

 F        BY
    U1                 1.014       0.000      0.000       1.014       1.014
    U2                 0.977       0.000      0.000       0.977       0.977
    U3                 0.965       0.000      0.000       0.965       0.965
    U4                 0.981       0.000      0.000       0.981       0.981
    U5                 0.909       0.000      0.000       0.909       0.909
    U6                 0.978       0.000      0.000       0.978       0.978
    U7                 1.076       0.000      0.000       1.076       1.076
    U8                 0.979       0.000      0.000       0.979       0.979
    U9                 1.063       0.000      0.000       1.063       1.063
    U10                0.998       0.000      0.000       0.998       0.998

 Thresholds
    U1$1               2.337       0.000      0.000       2.337       2.337
    U2$1               2.317       0.000      0.000       2.317       2.317
    U3$1               2.274       0.000      0.000       2.274       2.274
    U4$1               2.308       0.000      0.000       2.308       2.308
    U5$1               2.190       0.000      0.000       2.190       2.190
    U6$1               2.006       0.000      0.000       2.006       2.006
    U7$1               2.111       0.000      0.000       2.111       2.111
    U8$1               2.033       0.000      0.000       2.033       2.033
    U9$1               2.074       0.000      0.000       2.074       2.074
    U10$1              1.979       0.000      0.000       1.979       1.979

 Variances
    F                  1.000       0.000      0.000       1.000       1.000


TECHNICAL 1 OUTPUT


     PARAMETER SPECIFICATION


           TAU
              U1$1          U2$1          U3$1          U4$1          U5$1
              ________      ________      ________      ________      ________
                    0             0             0             0             0


           TAU
              U6$1          U7$1          U8$1          U9$1          U10$1
              ________      ________      ________      ________      ________
                    0             0             0             0             0


           NU
              U1            U2            U3            U4            U5
              ________      ________      ________      ________      ________
                    0             0             0             0             0


           NU
              U6            U7            U8            U9            U10
              ________      ________      ________      ________      ________
                    0             0             0             0             0


           LAMBDA
              F
              ________
 U1                 0
 U2                 0
 U3                 0
 U4                 0
 U5                 0
 U6                 0
 U7                 0
 U8                 0
 U9                 0
 U10                0


           THETA
              U1            U2            U3            U4            U5
              ________      ________      ________      ________      ________
 U1                 0
 U2                 0             0
 U3                 0             0             0
 U4                 0             0             0             0
 U5                 0             0             0             0             0
 U6                 0             0             0             0             0
 U7                 0             0             0             0             0
 U8                 0             0             0             0             0
 U9                 0             0             0             0             0
 U10                0             0             0             0             0


           THETA
              U6            U7            U8            U9            U10
              ________      ________      ________      ________      ________
 U6                 0
 U7                 0             0
 U8                 0             0             0
 U9                 0             0             0             0
 U10                0             0             0             0             0


           ALPHA
              F
              ________
                    0


           BETA
              F
              ________
 F                  0


           PSI
              F
              ________
 F                  0


     STARTING VALUES


           TAU
              U1$1          U2$1          U3$1          U4$1          U5$1
              ________      ________      ________      ________      ________
                2.337         2.317         2.274         2.308         2.190


           TAU
              U6$1          U7$1          U8$1          U9$1          U10$1
              ________      ________      ________      ________      ________
                2.006         2.111         2.033         2.074         1.979


           NU
              U1            U2            U3            U4            U5
              ________      ________      ________      ________      ________
                0.000         0.000         0.000         0.000         0.000


           NU
              U6            U7            U8            U9            U10
              ________      ________      ________      ________      ________
                0.000         0.000         0.000         0.000         0.000


           LAMBDA
              F
              ________
 U1             1.014
 U2             0.977
 U3             0.965
 U4             0.981
 U5             0.909
 U6             0.978
 U7             1.076
 U8             0.979
 U9             1.063
 U10            0.998


           THETA
              U1            U2            U3            U4            U5
              ________      ________      ________      ________      ________
 U1             1.000
 U2             0.000         1.000
 U3             0.000         0.000         1.000
 U4             0.000         0.000         0.000         1.000
 U5             0.000         0.000         0.000         0.000         1.000
 U6             0.000         0.000         0.000         0.000         0.000
 U7             0.000         0.000         0.000         0.000         0.000
 U8             0.000         0.000         0.000         0.000         0.000
 U9             0.000         0.000         0.000         0.000         0.000
 U10            0.000         0.000         0.000         0.000         0.000


           THETA
              U6            U7            U8            U9            U10
              ________      ________      ________      ________      ________
 U6             1.000
 U7             0.000         1.000
 U8             0.000         0.000         1.000
 U9             0.000         0.000         0.000         1.000
 U10            0.000         0.000         0.000         0.000         1.000


           ALPHA
              F
              ________
                0.000


           BETA
              F
              ________
 F              0.000


           PSI
              F
              ________
 F              1.000



     PRIORS FOR ALL PARAMETERS            PRIOR MEAN      PRIOR VARIANCE     PRIOR STD. DEV.



SUMMARIES OF PLAUSIBLE VALUES (N = NUMBER OF OBSERVATIONS * NUMBER OF IMPUTATIONS)


     SAMPLE STATISTICS


           Means
              F
              ________
               -0.011


           Covariances
              F
              ________
 F              1.054


           Correlations
              F
              ________
 F              1.000


SUMMARY OF PLAUSIBLE STANDARD DEVIATION (N = NUMBER OF OBSERVATIONS)


     SAMPLE STATISTICS


           Means
              F_SD
              ________
                0.000


           Covariances
              F_SD
              ________
 F_SD           0.000


           Correlations
              F_SD
              ________
 F_SD           1.000


SAVEDATA INFORMATION


  Save file
    foc_bayes.dat

  Order and format of variables

    U1                               F10.3
    U2                               F10.3
    U3                               F10.3
    U4                               F10.3
    U5                               F10.3
    U6                               F10.3
    U7                               F10.3
    U8                               F10.3
    U9                               F10.3
    U10                              F10.3
    F Mean                           F10.3
    F Median                         F10.3
    F Standard Deviation             F10.3
    F 2.5% Value                     F10.3
    F 97.5% Value                    F10.3
    ID                               I6

  Save file format
    15F10.3 I6

  Save file record length    10000

  Save missing symbol        *


     Beginning Time:  13:11:40
        Ending Time:  13:11:41
       Elapsed Time:  00:00:01



MUTHEN & MUTHEN
3463 Stoner Ave.
Los Angeles, CA  90066

Tel: (310) 391-9971
Fax: (310) 391-8971
Web: www.StatModel.com
Support: Support@StatModel.com

Copyright (c) 1998-2021 Muthen & Muthen

. clear

. runmplus_load_savedata , out(hoo.out)

. rename f_mean f_est_bayes

. keep id f_est_bayes

. tempfile focal_bayes

. save `focal_bayes' , replace
(note: file /var/folders/lq/w3m6z0dj41ngkbbc0204xb7m0000gp/T//S_03002.000008 not found)
file /var/folders/lq/w3m6z0dj41ngkbbc0204xb7m0000gp/T//S_03002.000008 saved

Reference group

. local model ""

. use `f1' , clear

. keep if focal~=1
(5,001 observations deleted)

. forvalues i=1/30 {
  2.   local l`i' = svalues[`i',1]
  3.   local t=`i'+30
  4.   local t`i' = svalues[`t',1]
  5.   local model "`model' f by u`i'@`l`i'' ;"
  6.   local model "`model' [u`i'$1@`t`i''] ;"
  7. }

. runmplus u1-u30 , cat(all) idvariable(id) ///
>    estimator(bayes) ///
>    model(`model' f@1;) ///
>    savedata(save=fscores(1 1); file=ref_bayes.dat;) ///
>    savelog(ioo)


     Mplus VERSION 8.6 (Mac)
     MUTHEN & MUTHEN

     Running input file '__000001.inp'...


   TECHNICAL 8 OUTPUT FOR BAYES ESTIMATION

                     POTENTIAL       PARAMETER WITH           TOTAL
     ITERATION    SCALE REDUCTION      HIGHEST PSR     TIME    TIME
     100              1.000               0            3.20     3.2

   DUE TO SAVE=FSCORES REQUEST IN THE SAVEDATA COMMAND, FACTOR SCORES
   (PLAUSIBLE VALUES) ARE OBTAINED BY MULTIPLE IMPUTATIONS.  THE
   NUMBER OF IMPUTATIONS CAN BE CHANGED WITH THE SAVE=FSCORES REQUEST.

     GENERATING IMPUTATION 1

     WRITING FACTOR SCORES (PLAUSIBLE VALUES) TO SAVEDATA AND/OR PLOT FILE

     Beginning Time:  13:11:42
        Ending Time:  13:11:46
       Elapsed Time:  00:00:04

     Output saved in '__000001.out'.
Mplus VERSION 8.6 (Mac)
MUTHEN & MUTHEN
08/20/2021   1:11 PM

INPUT INSTRUCTIONS

  TITLE:
    Variable List -

    u1 :
    u2 :
    u3 :
    u4 :
    u5 :
    u6 :
    u7 :
    u8 :
    u9 :
    u10 :
    u11 :
    u12 :
    u13 :
    u14 :
    u15 :
    u16 :
    u17 :
    u18 :
    u19 :
    u20 :
    u21 :
    u22 :
    u23 :
    u24 :
    u25 :
    u26 :
    u27 :
    u28 :
    u29 :
    u30 :
    id :

  DATA:
    FILE = __000001.dat ;
  VARIABLE:
    NAMES =
      u1 u2 u3 u4 u5 u6 u7 u8 u9 u10 u11 u12 u13 u14 u15 u16 u17 u18
  u19 u20 u21 u22 u23 u24 u25 u26 u27 u28 u29 u30 id ;
    MISSING ARE ALL (-9999) ;
    CATEGORICAL =
      all
      ;
    IDVARIABLE = id ;
  ANALYSIS:
     ESTIMATOR = bayes ;
  OUTPUT:
  SAVEDATA:
  save=fscores(1 1) ;
  file=ref_bayes.dat ;

  MODEL:
  f by u1@1.01409  ;
  [u1$1@2.33686]  ;
  f by u2@.97653  ;
  [u2$1@2.31682]  ;
  f by u3@.96534  ;
  [u3$1@2.27431]  ;
  f by u4@.98097  ;
  [u4$1@2.30823]  ;
  f by u5@.90888  ;
  [u5$1@2.1895]  ;
  f by u6@.97777  ;
  [u6$1@2.00644]  ;
  f by u7@1.07641  ;
  [u7$1@2.11101]  ;
  f by u8@.97867  ;
  [u8$1@2.03322]  ;
  f by u9@1.0626  ;
  [u9$1@2.07416]  ;
  f by u10@.99782  ;
  [u10$1@1.97926]  ;
  f by u11@1.01746  ;
  [u11$1@1.80978]  ;
  f by u12@1.04867  ;
  [u12$1@1.82851]  ;
  f by u13@1.02499  ;
  [u13$1@1.80543]  ;
  f by u14@.95264  ;
  [u14$1@1.77559]  ;
  f by u15@.95452  ;
  [u15$1@1.77015]  ;
  f by u16@1.00153  ;
  [u16$1@1.18424]  ;
  f by u17@.98187  ;
  [u17$1@1.20945]  ;
  f by u18@1.00501  ;
  [u18$1@1.21787]  ;
  f by u19@1.03146  ;
  [u19$1@1.19854]  ;
  f by u20@.99537  ;
  [u20$1@1.16959]  ;
  f by u21@.98347  ;
  [u21$1@.38352]  ;
  f by u22@1.01198  ;
  [u22$1@.3879]  ;
  f by u23@1.03699  ;
  [u23$1@.38417]  ;
  f by u24@.99536  ;
  [u24$1@.32265]  ;
  f by u25@.99005  ;
  [u25$1@.37819]  ;
  f by u26@1.0051  ;
  [u26$1@-.00302]  ;
  f by u27@1.00563  ;
  [u27$1@.01333]  ;
  f by u28@1.03124  ;
  [u28$1@-.00702]  ;
  f by u29@1.01361  ;
  [u29$1@-.01338]  ;
  f by u30@1.06863  ;
  [u30$1@.00899]  ;
  f@1 ;




INPUT READING TERMINATED NORMALLY




Variable List -

u1 :
u2 :
u3 :
u4 :
u5 :
u6 :
u7 :
u8 :
u9 :
u10 :
u11 :
u12 :
u13 :
u14 :
u15 :
u16 :
u17 :
u18 :
u19 :
u20 :
u21 :
u22 :
u23 :
u24 :
u25 :
u26 :
u27 :
u28 :
u29 :
u30 :
id :

SUMMARY OF ANALYSIS

Number of groups                                                 1
Number of observations                                        5000

Number of dependent variables                                   30
Number of independent variables                                  0
Number of continuous latent variables                            1

Observed dependent variables

  Binary and ordered categorical (ordinal)
   U1          U2          U3          U4          U5          U6
   U7          U8          U9          U10         U11         U12
   U13         U14         U15         U16         U17         U18
   U19         U20         U21         U22         U23         U24
   U25         U26         U27         U28         U29         U30

Continuous latent variables
   F

Variables with special functions

  ID variable           ID

Estimator                                                    BAYES
Specifications for Bayesian Estimation
  Point estimate                                            MEDIAN
  Number of Markov chain Monte Carlo (MCMC) chains               2
  Random seed for the first chain                                0
  Starting value information                           UNPERTURBED
  Algorithm used for Markov chain Monte Carlo           GIBBS(PX1)
  Convergence criterion                                  0.500D-01
  Maximum number of iterations                               50000
  K-th iteration used for thinning                               1
Link                                                        PROBIT
Specifications for Bayes Factor Score Estimation
  Number of imputed data sets                                    1
  Iteration intervals for thinning                               1

Input data file(s)
  __000001.dat
Input data format  FREE


SUMMARY OF DATA



SUMMARY OF MISSING DATA PATTERNS

     Number of missing data patterns             1


     MISSING DATA PATTERNS (x = not missing)

           1
 U1        x
 U2        x
 U3        x
 U4        x
 U5        x
 U6        x
 U7        x
 U8        x
 U9        x
 U10       x
 U11       x
 U12       x
 U13       x
 U14       x
 U15       x
 U16       x
 U17       x
 U18       x
 U19       x
 U20       x
 U21       x
 U22       x
 U23       x
 U24       x
 U25       x
 U26       x
 U27       x
 U28       x
 U29       x
 U30       x


     MISSING DATA PATTERN FREQUENCIES

    Pattern   Frequency
          1        5000


COVARIANCE COVERAGE OF DATA

Minimum covariance coverage value   0.100


     PROPORTION OF DATA PRESENT


           Covariance Coverage
              U1            U2            U3            U4            U5
              ________      ________      ________      ________      ________
 U1             1.000
 U2             1.000         1.000
 U3             1.000         1.000         1.000
 U4             1.000         1.000         1.000         1.000
 U5             1.000         1.000         1.000         1.000         1.000
 U6             1.000         1.000         1.000         1.000         1.000
 U7             1.000         1.000         1.000         1.000         1.000
 U8             1.000         1.000         1.000         1.000         1.000
 U9             1.000         1.000         1.000         1.000         1.000
 U10            1.000         1.000         1.000         1.000         1.000
 U11            1.000         1.000         1.000         1.000         1.000
 U12            1.000         1.000         1.000         1.000         1.000
 U13            1.000         1.000         1.000         1.000         1.000
 U14            1.000         1.000         1.000         1.000         1.000
 U15            1.000         1.000         1.000         1.000         1.000
 U16            1.000         1.000         1.000         1.000         1.000
 U17            1.000         1.000         1.000         1.000         1.000
 U18            1.000         1.000         1.000         1.000         1.000
 U19            1.000         1.000         1.000         1.000         1.000
 U20            1.000         1.000         1.000         1.000         1.000
 U21            1.000         1.000         1.000         1.000         1.000
 U22            1.000         1.000         1.000         1.000         1.000
 U23            1.000         1.000         1.000         1.000         1.000
 U24            1.000         1.000         1.000         1.000         1.000
 U25            1.000         1.000         1.000         1.000         1.000
 U26            1.000         1.000         1.000         1.000         1.000
 U27            1.000         1.000         1.000         1.000         1.000
 U28            1.000         1.000         1.000         1.000         1.000
 U29            1.000         1.000         1.000         1.000         1.000
 U30            1.000         1.000         1.000         1.000         1.000


           Covariance Coverage
              U6            U7            U8            U9            U10
              ________      ________      ________      ________      ________
 U6             1.000
 U7             1.000         1.000
 U8             1.000         1.000         1.000
 U9             1.000         1.000         1.000         1.000
 U10            1.000         1.000         1.000         1.000         1.000
 U11            1.000         1.000         1.000         1.000         1.000
 U12            1.000         1.000         1.000         1.000         1.000
 U13            1.000         1.000         1.000         1.000         1.000
 U14            1.000         1.000         1.000         1.000         1.000
 U15            1.000         1.000         1.000         1.000         1.000
 U16            1.000         1.000         1.000         1.000         1.000
 U17            1.000         1.000         1.000         1.000         1.000
 U18            1.000         1.000         1.000         1.000         1.000
 U19            1.000         1.000         1.000         1.000         1.000
 U20            1.000         1.000         1.000         1.000         1.000
 U21            1.000         1.000         1.000         1.000         1.000
 U22            1.000         1.000         1.000         1.000         1.000
 U23            1.000         1.000         1.000         1.000         1.000
 U24            1.000         1.000         1.000         1.000         1.000
 U25            1.000         1.000         1.000         1.000         1.000
 U26            1.000         1.000         1.000         1.000         1.000
 U27            1.000         1.000         1.000         1.000         1.000
 U28            1.000         1.000         1.000         1.000         1.000
 U29            1.000         1.000         1.000         1.000         1.000
 U30            1.000         1.000         1.000         1.000         1.000


           Covariance Coverage
              U11           U12           U13           U14           U15
              ________      ________      ________      ________      ________
 U11            1.000
 U12            1.000         1.000
 U13            1.000         1.000         1.000
 U14            1.000         1.000         1.000         1.000
 U15            1.000         1.000         1.000         1.000         1.000
 U16            1.000         1.000         1.000         1.000         1.000
 U17            1.000         1.000         1.000         1.000         1.000
 U18            1.000         1.000         1.000         1.000         1.000
 U19            1.000         1.000         1.000         1.000         1.000
 U20            1.000         1.000         1.000         1.000         1.000
 U21            1.000         1.000         1.000         1.000         1.000
 U22            1.000         1.000         1.000         1.000         1.000
 U23            1.000         1.000         1.000         1.000         1.000
 U24            1.000         1.000         1.000         1.000         1.000
 U25            1.000         1.000         1.000         1.000         1.000
 U26            1.000         1.000         1.000         1.000         1.000
 U27            1.000         1.000         1.000         1.000         1.000
 U28            1.000         1.000         1.000         1.000         1.000
 U29            1.000         1.000         1.000         1.000         1.000
 U30            1.000         1.000         1.000         1.000         1.000


           Covariance Coverage
              U16           U17           U18           U19           U20
              ________      ________      ________      ________      ________
 U16            1.000
 U17            1.000         1.000
 U18            1.000         1.000         1.000
 U19            1.000         1.000         1.000         1.000
 U20            1.000         1.000         1.000         1.000         1.000
 U21            1.000         1.000         1.000         1.000         1.000
 U22            1.000         1.000         1.000         1.000         1.000
 U23            1.000         1.000         1.000         1.000         1.000
 U24            1.000         1.000         1.000         1.000         1.000
 U25            1.000         1.000         1.000         1.000         1.000
 U26            1.000         1.000         1.000         1.000         1.000
 U27            1.000         1.000         1.000         1.000         1.000
 U28            1.000         1.000         1.000         1.000         1.000
 U29            1.000         1.000         1.000         1.000         1.000
 U30            1.000         1.000         1.000         1.000         1.000


           Covariance Coverage
              U21           U22           U23           U24           U25
              ________      ________      ________      ________      ________
 U21            1.000
 U22            1.000         1.000
 U23            1.000         1.000         1.000
 U24            1.000         1.000         1.000         1.000
 U25            1.000         1.000         1.000         1.000         1.000
 U26            1.000         1.000         1.000         1.000         1.000
 U27            1.000         1.000         1.000         1.000         1.000
 U28            1.000         1.000         1.000         1.000         1.000
 U29            1.000         1.000         1.000         1.000         1.000
 U30            1.000         1.000         1.000         1.000         1.000


           Covariance Coverage
              U26           U27           U28           U29           U30
              ________      ________      ________      ________      ________
 U26            1.000
 U27            1.000         1.000
 U28            1.000         1.000         1.000
 U29            1.000         1.000         1.000         1.000
 U30            1.000         1.000         1.000         1.000         1.000


UNIVARIATE PROPORTIONS AND COUNTS FOR CATEGORICAL VARIABLES

    U1
      Category 1    0.950         4752.000
      Category 2    0.050          248.000
    U2
      Category 1    0.955         4773.000
      Category 2    0.045          227.000
    U3
      Category 1    0.949         4744.000
      Category 2    0.051          256.000
    U4
      Category 1    0.949         4743.000
      Category 2    0.051          257.000
    U5
      Category 1    0.949         4746.000
      Category 2    0.051          254.000
    U6
      Category 1    0.929         4643.000
      Category 2    0.071          357.000
    U7
      Category 1    0.928         4641.000
      Category 2    0.072          359.000
    U8
      Category 1    0.930         4648.000
      Category 2    0.070          352.000
    U9
      Category 1    0.926         4632.000
      Category 2    0.074          368.000
    U10
      Category 1    0.922         4608.000
      Category 2    0.078          392.000
    U11
      Category 1    0.894         4468.000
      Category 2    0.106          532.000
    U12
      Category 1    0.896         4478.000
      Category 2    0.104          522.000
    U13
      Category 1    0.899         4496.000
      Category 2    0.101          504.000
    U14
      Category 1    0.899         4495.000
      Category 2    0.101          505.000
    U15
      Category 1    0.900         4499.000
      Category 2    0.100          501.000
    U16
      Category 1    0.793         3967.000
      Category 2    0.207         1033.000
    U17
      Category 1    0.803         4017.000
      Category 2    0.197          983.000
    U18
      Category 1    0.805         4023.000
      Category 2    0.195          977.000
    U19
      Category 1    0.801         4004.000
      Category 2    0.199          996.000
    U20
      Category 1    0.795         3973.000
      Category 2    0.205         1027.000
    U21
      Category 1    0.602         3011.000
      Category 2    0.398         1989.000
    U22
      Category 1    0.605         3024.000
      Category 2    0.395         1976.000
    U23
      Category 1    0.610         3052.000
      Category 2    0.390         1948.000
    U24
      Category 1    0.593         2965.000
      Category 2    0.407         2035.000
    U25
      Category 1    0.608         3040.000
      Category 2    0.392         1960.000
    U26
      Category 1    0.506         2531.000
      Category 2    0.494         2469.000
    U27
      Category 1    0.503         2515.000
      Category 2    0.497         2485.000
    U28
      Category 1    0.499         2494.000
      Category 2    0.501         2506.000
    U29
      Category 1    0.503         2517.000
      Category 2    0.497         2483.000
    U30
      Category 1    0.506         2531.000
      Category 2    0.494         2469.000



THE MODEL ESTIMATION TERMINATED NORMALLY

     USE THE FBITERATIONS OPTION TO INCREASE THE NUMBER OF ITERATIONS BY A FACTOR
     OF AT LEAST TWO TO CHECK CONVERGENCE AND THAT THE PSR VALUE DOES NOT INCREASE.



MODEL FIT INFORMATION

Number of Free Parameters                               0

Bayesian Posterior Predictive Checking using Chi-Square

          95% Confidence Interval for the Difference Between
          the Observed and the Replicated Chi-Square Values

                                -71.585            94.774

          Posterior Predictive P-Value              0.417



MODEL RESULTS

                                Posterior  One-Tailed         95% C.I.
                    Estimate       S.D.      P-Value   Lower 2.5%  Upper 2.5%  Significance

 F        BY
    U1                 1.014       0.000      0.000       1.014       1.014
    U2                 0.977       0.000      0.000       0.977       0.977
    U3                 0.965       0.000      0.000       0.965       0.965
    U4                 0.981       0.000      0.000       0.981       0.981
    U5                 0.909       0.000      0.000       0.909       0.909
    U6                 0.978       0.000      0.000       0.978       0.978
    U7                 1.076       0.000      0.000       1.076       1.076
    U8                 0.979       0.000      0.000       0.979       0.979
    U9                 1.063       0.000      0.000       1.063       1.063
    U10                0.998       0.000      0.000       0.998       0.998
    U11                1.017       0.000      0.000       1.017       1.017
    U12                1.049       0.000      0.000       1.049       1.049
    U13                1.025       0.000      0.000       1.025       1.025
    U14                0.953       0.000      0.000       0.953       0.953
    U15                0.955       0.000      0.000       0.955       0.955
    U16                1.002       0.000      0.000       1.002       1.002
    U17                0.982       0.000      0.000       0.982       0.982
    U18                1.005       0.000      0.000       1.005       1.005
    U19                1.031       0.000      0.000       1.031       1.031
    U20                0.995       0.000      0.000       0.995       0.995
    U21                0.983       0.000      0.000       0.983       0.983
    U22                1.012       0.000      0.000       1.012       1.012
    U23                1.037       0.000      0.000       1.037       1.037
    U24                0.995       0.000      0.000       0.995       0.995
    U25                0.990       0.000      0.000       0.990       0.990
    U26                1.005       0.000      0.000       1.005       1.005
    U27                1.006       0.000      0.000       1.006       1.006
    U28                1.031       0.000      0.000       1.031       1.031
    U29                1.014       0.000      0.000       1.014       1.014
    U30                1.069       0.000      0.000       1.069       1.069

 Thresholds
    U1$1               2.337       0.000      0.000       2.337       2.337
    U2$1               2.317       0.000      0.000       2.317       2.317
    U3$1               2.274       0.000      0.000       2.274       2.274
    U4$1               2.308       0.000      0.000       2.308       2.308
    U5$1               2.190       0.000      0.000       2.190       2.190
    U6$1               2.006       0.000      0.000       2.006       2.006
    U7$1               2.111       0.000      0.000       2.111       2.111
    U8$1               2.033       0.000      0.000       2.033       2.033
    U9$1               2.074       0.000      0.000       2.074       2.074
    U10$1              1.979       0.000      0.000       1.979       1.979
    U11$1              1.810       0.000      0.000       1.810       1.810
    U12$1              1.829       0.000      0.000       1.829       1.829
    U13$1              1.805       0.000      0.000       1.805       1.805
    U14$1              1.776       0.000      0.000       1.776       1.776
    U15$1              1.770       0.000      0.000       1.770       1.770
    U16$1              1.184       0.000      0.000       1.184       1.184
    U17$1              1.209       0.000      0.000       1.209       1.209
    U18$1              1.218       0.000      0.000       1.218       1.218
    U19$1              1.199       0.000      0.000       1.199       1.199
    U20$1              1.170       0.000      0.000       1.170       1.170
    U21$1              0.384       0.000      0.000       0.384       0.384
    U22$1              0.388       0.000      0.000       0.388       0.388
    U23$1              0.384       0.000      0.000       0.384       0.384
    U24$1              0.323       0.000      0.000       0.323       0.323
    U25$1              0.378       0.000      0.000       0.378       0.378
    U26$1             -0.003       0.000      0.000      -0.003      -0.003
    U27$1              0.013       0.000      0.000       0.013       0.013
    U28$1             -0.007       0.000      0.000      -0.007      -0.007
    U29$1             -0.013       0.000      0.000      -0.013      -0.013
    U30$1              0.009       0.000      0.000       0.009       0.009

 Variances
    F                  1.000       0.000      0.000       1.000       1.000


TECHNICAL 1 OUTPUT


     PARAMETER SPECIFICATION


           TAU
              U1$1          U2$1          U3$1          U4$1          U5$1
              ________      ________      ________      ________      ________
                    0             0             0             0             0


           TAU
              U6$1          U7$1          U8$1          U9$1          U10$1
              ________      ________      ________      ________      ________
                    0             0             0             0             0


           TAU
              U11$1         U12$1         U13$1         U14$1         U15$1
              ________      ________      ________      ________      ________
                    0             0             0             0             0


           TAU
              U16$1         U17$1         U18$1         U19$1         U20$1
              ________      ________      ________      ________      ________
                    0             0             0             0             0


           TAU
              U21$1         U22$1         U23$1         U24$1         U25$1
              ________      ________      ________      ________      ________
                    0             0             0             0             0


           TAU
              U26$1         U27$1         U28$1         U29$1         U30$1
              ________      ________      ________      ________      ________
                    0             0             0             0             0


           NU
              U1            U2            U3            U4            U5
              ________      ________      ________      ________      ________
                    0             0             0             0             0


           NU
              U6            U7            U8            U9            U10
              ________      ________      ________      ________      ________
                    0             0             0             0             0


           NU
              U11           U12           U13           U14           U15
              ________      ________      ________      ________      ________
                    0             0             0             0             0


           NU
              U16           U17           U18           U19           U20
              ________      ________      ________      ________      ________
                    0             0             0             0             0


           NU
              U21           U22           U23           U24           U25
              ________      ________      ________      ________      ________
                    0             0             0             0             0


           NU
              U26           U27           U28           U29           U30
              ________      ________      ________      ________      ________
                    0             0             0             0             0


           LAMBDA
              F
              ________
 U1                 0
 U2                 0
 U3                 0
 U4                 0
 U5                 0
 U6                 0
 U7                 0
 U8                 0
 U9                 0
 U10                0
 U11                0
 U12                0
 U13                0
 U14                0
 U15                0
 U16                0
 U17                0
 U18                0
 U19                0
 U20                0
 U21                0
 U22                0
 U23                0
 U24                0
 U25                0
 U26                0
 U27                0
 U28                0
 U29                0
 U30                0


           THETA
              U1            U2            U3            U4            U5
              ________      ________      ________      ________      ________
 U1                 0
 U2                 0             0
 U3                 0             0             0
 U4                 0             0             0             0
 U5                 0             0             0             0             0
 U6                 0             0             0             0             0
 U7                 0             0             0             0             0
 U8                 0             0             0             0             0
 U9                 0             0             0             0             0
 U10                0             0             0             0             0
 U11                0             0             0             0             0
 U12                0             0             0             0             0
 U13                0             0             0             0             0
 U14                0             0             0             0             0
 U15                0             0             0             0             0
 U16                0             0             0             0             0
 U17                0             0             0             0             0
 U18                0             0             0             0             0
 U19                0             0             0             0             0
 U20                0             0             0             0             0
 U21                0             0             0             0             0
 U22                0             0             0             0             0
 U23                0             0             0             0             0
 U24                0             0             0             0             0
 U25                0             0             0             0             0
 U26                0             0             0             0             0
 U27                0             0             0             0             0
 U28                0             0             0             0             0
 U29                0             0             0             0             0
 U30                0             0             0             0             0


           THETA
              U6            U7            U8            U9            U10
              ________      ________      ________      ________      ________
 U6                 0
 U7                 0             0
 U8                 0             0             0
 U9                 0             0             0             0
 U10                0             0             0             0             0
 U11                0             0             0             0             0
 U12                0             0             0             0             0
 U13                0             0             0             0             0
 U14                0             0             0             0             0
 U15                0             0             0             0             0
 U16                0             0             0             0             0
 U17                0             0             0             0             0
 U18                0             0             0             0             0
 U19                0             0             0             0             0
 U20                0             0             0             0             0
 U21                0             0             0             0             0
 U22                0             0             0             0             0
 U23                0             0             0             0             0
 U24                0             0             0             0             0
 U25                0             0             0             0             0
 U26                0             0             0             0             0
 U27                0             0             0             0             0
 U28                0             0             0             0             0
 U29                0             0             0             0             0
 U30                0             0             0             0             0


           THETA
              U11           U12           U13           U14           U15
              ________      ________      ________      ________      ________
 U11                0
 U12                0             0
 U13                0             0             0
 U14                0             0             0             0
 U15                0             0             0             0             0
 U16                0             0             0             0             0
 U17                0             0             0             0             0
 U18                0             0             0             0             0
 U19                0             0             0             0             0
 U20                0             0             0             0             0
 U21                0             0             0             0             0
 U22                0             0             0             0             0
 U23                0             0             0             0             0
 U24                0             0             0             0             0
 U25                0             0             0             0             0
 U26                0             0             0             0             0
 U27                0             0             0             0             0
 U28                0             0             0             0             0
 U29                0             0             0             0             0
 U30                0             0             0             0             0


           THETA
              U16           U17           U18           U19           U20
              ________      ________      ________      ________      ________
 U16                0
 U17                0             0
 U18                0             0             0
 U19                0             0             0             0
 U20                0             0             0             0             0
 U21                0             0             0             0             0
 U22                0             0             0             0             0
 U23                0             0             0             0             0
 U24                0             0             0             0             0
 U25                0             0             0             0             0
 U26                0             0             0             0             0
 U27                0             0             0             0             0
 U28                0             0             0             0             0
 U29                0             0             0             0             0
 U30                0             0             0             0             0


           THETA
              U21           U22           U23           U24           U25
              ________      ________      ________      ________      ________
 U21                0
 U22                0             0
 U23                0             0             0
 U24                0             0             0             0
 U25                0             0             0             0             0
 U26                0             0             0             0             0
 U27                0             0             0             0             0
 U28                0             0             0             0             0
 U29                0             0             0             0             0
 U30                0             0             0             0             0


           THETA
              U26           U27           U28           U29           U30
              ________      ________      ________      ________      ________
 U26                0
 U27                0             0
 U28                0             0             0
 U29                0             0             0             0
 U30                0             0             0             0             0


           ALPHA
              F
              ________
                    0


           BETA
              F
              ________
 F                  0


           PSI
              F
              ________
 F                  0


     STARTING VALUES


           TAU
              U1$1          U2$1          U3$1          U4$1          U5$1
              ________      ________      ________      ________      ________
                2.337         2.317         2.274         2.308         2.190


           TAU
              U6$1          U7$1          U8$1          U9$1          U10$1
              ________      ________      ________      ________      ________
                2.006         2.111         2.033         2.074         1.979


           TAU
              U11$1         U12$1         U13$1         U14$1         U15$1
              ________      ________      ________      ________      ________
                1.810         1.829         1.805         1.776         1.770


           TAU
              U16$1         U17$1         U18$1         U19$1         U20$1
              ________      ________      ________      ________      ________
                1.184         1.209         1.218         1.199         1.170


           TAU
              U21$1         U22$1         U23$1         U24$1         U25$1
              ________      ________      ________      ________      ________
                0.384         0.388         0.384         0.323         0.378


           TAU
              U26$1         U27$1         U28$1         U29$1         U30$1
              ________      ________      ________      ________      ________
               -0.003         0.013        -0.007        -0.013         0.009


           NU
              U1            U2            U3            U4            U5
              ________      ________      ________      ________      ________
                0.000         0.000         0.000         0.000         0.000


           NU
              U6            U7            U8            U9            U10
              ________      ________      ________      ________      ________
                0.000         0.000         0.000         0.000         0.000


           NU
              U11           U12           U13           U14           U15
              ________      ________      ________      ________      ________
                0.000         0.000         0.000         0.000         0.000


           NU
              U16           U17           U18           U19           U20
              ________      ________      ________      ________      ________
                0.000         0.000         0.000         0.000         0.000


           NU
              U21           U22           U23           U24           U25
              ________      ________      ________      ________      ________
                0.000         0.000         0.000         0.000         0.000


           NU
              U26           U27           U28           U29           U30
              ________      ________      ________      ________      ________
                0.000         0.000         0.000         0.000         0.000


           LAMBDA
              F
              ________
 U1             1.014
 U2             0.977
 U3             0.965
 U4             0.981
 U5             0.909
 U6             0.978
 U7             1.076
 U8             0.979
 U9             1.063
 U10            0.998
 U11            1.017
 U12            1.049
 U13            1.025
 U14            0.953
 U15            0.955
 U16            1.002
 U17            0.982
 U18            1.005
 U19            1.031
 U20            0.995
 U21            0.983
 U22            1.012
 U23            1.037
 U24            0.995
 U25            0.990
 U26            1.005
 U27            1.006
 U28            1.031
 U29            1.014
 U30            1.069


           THETA
              U1            U2            U3            U4            U5
              ________      ________      ________      ________      ________
 U1             1.000
 U2             0.000         1.000
 U3             0.000         0.000         1.000
 U4             0.000         0.000         0.000         1.000
 U5             0.000         0.000         0.000         0.000         1.000
 U6             0.000         0.000         0.000         0.000         0.000
 U7             0.000         0.000         0.000         0.000         0.000
 U8             0.000         0.000         0.000         0.000         0.000
 U9             0.000         0.000         0.000         0.000         0.000
 U10            0.000         0.000         0.000         0.000         0.000
 U11            0.000         0.000         0.000         0.000         0.000
 U12            0.000         0.000         0.000         0.000         0.000
 U13            0.000         0.000         0.000         0.000         0.000
 U14            0.000         0.000         0.000         0.000         0.000
 U15            0.000         0.000         0.000         0.000         0.000
 U16            0.000         0.000         0.000         0.000         0.000
 U17            0.000         0.000         0.000         0.000         0.000
 U18            0.000         0.000         0.000         0.000         0.000
 U19            0.000         0.000         0.000         0.000         0.000
 U20            0.000         0.000         0.000         0.000         0.000
 U21            0.000         0.000         0.000         0.000         0.000
 U22            0.000         0.000         0.000         0.000         0.000
 U23            0.000         0.000         0.000         0.000         0.000
 U24            0.000         0.000         0.000         0.000         0.000
 U25            0.000         0.000         0.000         0.000         0.000
 U26            0.000         0.000         0.000         0.000         0.000
 U27            0.000         0.000         0.000         0.000         0.000
 U28            0.000         0.000         0.000         0.000         0.000
 U29            0.000         0.000         0.000         0.000         0.000
 U30            0.000         0.000         0.000         0.000         0.000


           THETA
              U6            U7            U8            U9            U10
              ________      ________      ________      ________      ________
 U6             1.000
 U7             0.000         1.000
 U8             0.000         0.000         1.000
 U9             0.000         0.000         0.000         1.000
 U10            0.000         0.000         0.000         0.000         1.000
 U11            0.000         0.000         0.000         0.000         0.000
 U12            0.000         0.000         0.000         0.000         0.000
 U13            0.000         0.000         0.000         0.000         0.000
 U14            0.000         0.000         0.000         0.000         0.000
 U15            0.000         0.000         0.000         0.000         0.000
 U16            0.000         0.000         0.000         0.000         0.000
 U17            0.000         0.000         0.000         0.000         0.000
 U18            0.000         0.000         0.000         0.000         0.000
 U19            0.000         0.000         0.000         0.000         0.000
 U20            0.000         0.000         0.000         0.000         0.000
 U21            0.000         0.000         0.000         0.000         0.000
 U22            0.000         0.000         0.000         0.000         0.000
 U23            0.000         0.000         0.000         0.000         0.000
 U24            0.000         0.000         0.000         0.000         0.000
 U25            0.000         0.000         0.000         0.000         0.000
 U26            0.000         0.000         0.000         0.000         0.000
 U27            0.000         0.000         0.000         0.000         0.000
 U28            0.000         0.000         0.000         0.000         0.000
 U29            0.000         0.000         0.000         0.000         0.000
 U30            0.000         0.000         0.000         0.000         0.000


           THETA
              U11           U12           U13           U14           U15
              ________      ________      ________      ________      ________
 U11            1.000
 U12            0.000         1.000
 U13            0.000         0.000         1.000
 U14            0.000         0.000         0.000         1.000
 U15            0.000         0.000         0.000         0.000         1.000
 U16            0.000         0.000         0.000         0.000         0.000
 U17            0.000         0.000         0.000         0.000         0.000
 U18            0.000         0.000         0.000         0.000         0.000
 U19            0.000         0.000         0.000         0.000         0.000
 U20            0.000         0.000         0.000         0.000         0.000
 U21            0.000         0.000         0.000         0.000         0.000
 U22            0.000         0.000         0.000         0.000         0.000
 U23            0.000         0.000         0.000         0.000         0.000
 U24            0.000         0.000         0.000         0.000         0.000
 U25            0.000         0.000         0.000         0.000         0.000
 U26            0.000         0.000         0.000         0.000         0.000
 U27            0.000         0.000         0.000         0.000         0.000
 U28            0.000         0.000         0.000         0.000         0.000
 U29            0.000         0.000         0.000         0.000         0.000
 U30            0.000         0.000         0.000         0.000         0.000


           THETA
              U16           U17           U18           U19           U20
              ________      ________      ________      ________      ________
 U16            1.000
 U17            0.000         1.000
 U18            0.000         0.000         1.000
 U19            0.000         0.000         0.000         1.000
 U20            0.000         0.000         0.000         0.000         1.000
 U21            0.000         0.000         0.000         0.000         0.000
 U22            0.000         0.000         0.000         0.000         0.000
 U23            0.000         0.000         0.000         0.000         0.000
 U24            0.000         0.000         0.000         0.000         0.000
 U25            0.000         0.000         0.000         0.000         0.000
 U26            0.000         0.000         0.000         0.000         0.000
 U27            0.000         0.000         0.000         0.000         0.000
 U28            0.000         0.000         0.000         0.000         0.000
 U29            0.000         0.000         0.000         0.000         0.000
 U30            0.000         0.000         0.000         0.000         0.000


           THETA
              U21           U22           U23           U24           U25
              ________      ________      ________      ________      ________
 U21            1.000
 U22            0.000         1.000
 U23            0.000         0.000         1.000
 U24            0.000         0.000         0.000         1.000
 U25            0.000         0.000         0.000         0.000         1.000
 U26            0.000         0.000         0.000         0.000         0.000
 U27            0.000         0.000         0.000         0.000         0.000
 U28            0.000         0.000         0.000         0.000         0.000
 U29            0.000         0.000         0.000         0.000         0.000
 U30            0.000         0.000         0.000         0.000         0.000


           THETA
              U26           U27           U28           U29           U30
              ________      ________      ________      ________      ________
 U26            1.000
 U27            0.000         1.000
 U28            0.000         0.000         1.000
 U29            0.000         0.000         0.000         1.000
 U30            0.000         0.000         0.000         0.000         1.000


           ALPHA
              F
              ________
                0.000


           BETA
              F
              ________
 F              0.000


           PSI
              F
              ________
 F              1.000



     PRIORS FOR ALL PARAMETERS            PRIOR MEAN      PRIOR VARIANCE     PRIOR STD. DEV.



SUMMARIES OF PLAUSIBLE VALUES (N = NUMBER OF OBSERVATIONS * NUMBER OF IMPUTATIONS)


     SAMPLE STATISTICS


           Means
              F
              ________
               -0.017


           Covariances
              F
              ________
 F              1.024


           Correlations
              F
              ________
 F              1.000


SUMMARY OF PLAUSIBLE STANDARD DEVIATION (N = NUMBER OF OBSERVATIONS)


     SAMPLE STATISTICS


           Means
              F_SD
              ________
                0.000


           Covariances
              F_SD
              ________
 F_SD           0.000


           Correlations
              F_SD
              ________
 F_SD           1.000


SAVEDATA INFORMATION


  Save file
    ref_bayes.dat

  Order and format of variables

    U1                               F10.3
    U2                               F10.3
    U3                               F10.3
    U4                               F10.3
    U5                               F10.3
    U6                               F10.3
    U7                               F10.3
    U8                               F10.3
    U9                               F10.3
    U10                              F10.3
    U11                              F10.3
    U12                              F10.3
    U13                              F10.3
    U14                              F10.3
    U15                              F10.3
    U16                              F10.3
    U17                              F10.3
    U18                              F10.3
    U19                              F10.3
    U20                              F10.3
    U21                              F10.3
    U22                              F10.3
    U23                              F10.3
    U24                              F10.3
    U25                              F10.3
    U26                              F10.3
    U27                              F10.3
    U28                              F10.3
    U29                              F10.3
    U30                              F10.3
    F Mean                           F10.3
    F Median                         F10.3
    F Standard Deviation             F10.3
    F 2.5% Value                     F10.3
    F 97.5% Value                    F10.3
    ID                               I5

  Save file format
    35F10.3 I5

  Save file record length    10000

  Save missing symbol        *


     Beginning Time:  13:11:42
        Ending Time:  13:11:46
       Elapsed Time:  00:00:04



MUTHEN & MUTHEN
3463 Stoner Ave.
Los Angeles, CA  90066

Tel: (310) 391-9971
Fax: (310) 391-8971
Web: www.StatModel.com
Support: Support@StatModel.com

Copyright (c) 1998-2021 Muthen & Muthen

. clear

. runmplus_load_savedata , out(ioo.out)

. rename f_mean f_est_bayes

. keep id f_est_bayes

. tempfile reference_bayes

. save `reference_bayes' , replace
(note: file /var/folders/lq/w3m6z0dj41ngkbbc0204xb7m0000gp/T//S_03002.000009 not found)
file /var/folders/lq/w3m6z0dj41ngkbbc0204xb7m0000gp/T//S_03002.000009 saved

Merge files

. use `focal_bayes' , clear

. append using `reference_bayes'

. merge 1:1 id using `f2' , nogen
(note: variable id was int, now float to accommodate using data's values)

    Result                           # of obs.
    ─────────────────────────────────────────
    not matched                             0
    matched                            10,001  
    ─────────────────────────────────────────

Pyramid plot of Bayes factor score estimates, by group

(file /Users/rnj/Dropbox/Work/Syntax/pyramid_bayes.png written in PNG format)

DIF testing with regression approach

. forvalues i=1/10 {
  2.   logit u`i' i.focal##c.f_est_bayes
  3. }

Iteration 0:   log likelihood = -1996.9651  
Iteration 1:   log likelihood = -1618.5238  
Iteration 2:   log likelihood = -1385.8062  
Iteration 3:   log likelihood = -1376.8779  
Iteration 4:   log likelihood = -1376.8367  
Iteration 5:   log likelihood = -1376.8367  

Logistic regression                             Number of obs     =     10,001
                                                LR chi2(3)        =    1240.26
                                                Prob > chi2       =     0.0000
Log likelihood = -1376.8367                     Pseudo R2         =     0.3105

────────────────────┬────────────────────────────────────────────────────────────────
                 u1 │      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
────────────────────┼────────────────────────────────────────────────────────────────
            1.focal │  -.0880271   .2023997    -0.43   0.664    -.4847234    .3086691
        f_est_bayes │   1.918393   .0990831    19.36   0.000     1.724194    2.112592
                    │
focal#c.f_est_bayes │
                 1  │   .0645699   .1404867     0.46   0.646    -.2107789    .3399188
                    │
              _cons │  -4.324077   .1413382   -30.59   0.000    -4.601095    -4.04706
────────────────────┴────────────────────────────────────────────────────────────────

Iteration 0:   log likelihood = -1946.7453  
Iteration 1:   log likelihood = -1588.4771  
Iteration 2:   log likelihood =  -1356.071  
Iteration 3:   log likelihood = -1347.0241  
Iteration 4:   log likelihood = -1346.9788  
Iteration 5:   log likelihood = -1346.9788  

Logistic regression                             Number of obs     =     10,001
                                                LR chi2(3)        =    1199.53
                                                Prob > chi2       =     0.0000
Log likelihood = -1346.9788                     Pseudo R2         =     0.3081

────────────────────┬────────────────────────────────────────────────────────────────
                 u2 │      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
────────────────────┼────────────────────────────────────────────────────────────────
            1.focal │   .2445174   .2063609     1.18   0.236    -.1599425    .6489774
        f_est_bayes │    1.98933   .1052249    18.91   0.000     1.783093    2.195567
                    │
focal#c.f_est_bayes │
                 1  │  -.0923086   .1422146    -0.65   0.516    -.3710442     .186427
                    │
              _cons │   -4.52888   .1537272   -29.46   0.000     -4.83018   -4.227581
────────────────────┴────────────────────────────────────────────────────────────────

Iteration 0:   log likelihood = -2011.6198  
Iteration 1:   log likelihood = -1628.2482  
Iteration 2:   log likelihood = -1396.5351  
Iteration 3:   log likelihood = -1387.6987  
Iteration 4:   log likelihood = -1387.6569  
Iteration 5:   log likelihood = -1387.6569  

Logistic regression                             Number of obs     =     10,001
                                                LR chi2(3)        =    1247.93
                                                Prob > chi2       =     0.0000
Log likelihood = -1387.6569                     Pseudo R2         =     0.3102

────────────────────┬────────────────────────────────────────────────────────────────
                 u3 │      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
────────────────────┼────────────────────────────────────────────────────────────────
            1.focal │   .1010664   .2011999     0.50   0.615    -.2932782     .495411
        f_est_bayes │   2.017137    .101751    19.82   0.000     1.817708    2.216565
                    │
focal#c.f_est_bayes │
                 1  │  -.1353194   .1398696    -0.97   0.333    -.4094587    .1388199
                    │
              _cons │  -4.403405   .1457512   -30.21   0.000    -4.689072   -4.117738
────────────────────┴────────────────────────────────────────────────────────────────

Iteration 0:   log likelihood = -1976.3606  
Iteration 1:   log likelihood = -1611.9891  
Iteration 2:   log likelihood = -1392.8889  
Iteration 3:   log likelihood = -1385.2905  
Iteration 4:   log likelihood = -1385.2512  
Iteration 5:   log likelihood = -1385.2512  

Logistic regression                             Number of obs     =     10,001
                                                LR chi2(3)        =    1182.22
                                                Prob > chi2       =     0.0000
Log likelihood = -1385.2512                     Pseudo R2         =     0.2991

────────────────────┬────────────────────────────────────────────────────────────────
                 u4 │      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
────────────────────┼────────────────────────────────────────────────────────────────
            1.focal │  -.0003828   .1983158    -0.00   0.998    -.3890746    .3883089
        f_est_bayes │    1.95136   .0990443    19.70   0.000     1.757237    2.145483
                    │
focal#c.f_est_bayes │
                 1  │  -.1139427   .1379302    -0.83   0.409    -.3842809    .1563955
                    │
              _cons │  -4.317148   .1408297   -30.66   0.000    -4.593169   -4.041127
────────────────────┴────────────────────────────────────────────────────────────────

Iteration 0:   log likelihood = -2061.0617  
Iteration 1:   log likelihood = -1684.9126  
Iteration 2:   log likelihood = -1482.0622  
Iteration 3:   log likelihood =  -1475.962  
Iteration 4:   log likelihood = -1475.9244  
Iteration 5:   log likelihood = -1475.9244  

Logistic regression                             Number of obs     =     10,001
                                                LR chi2(3)        =    1170.27
                                                Prob > chi2       =     0.0000
Log likelihood = -1475.9244                     Pseudo R2         =     0.2839

────────────────────┬────────────────────────────────────────────────────────────────
                 u5 │      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
────────────────────┼────────────────────────────────────────────────────────────────
            1.focal │     .16324   .1852528     0.88   0.378    -.1998488    .5263288
        f_est_bayes │   1.867065   .0962936    19.39   0.000     1.678333    2.055797
                    │
focal#c.f_est_bayes │
                 1  │  -.1008039   .1313737    -0.77   0.443    -.3582915    .1566838
                    │
              _cons │  -4.230571   .1359761   -31.11   0.000    -4.497079   -3.964063
────────────────────┴────────────────────────────────────────────────────────────────

Iteration 0:   log likelihood = -2681.4743  
Iteration 1:   log likelihood = -2123.0032  
Iteration 2:   log likelihood = -1905.2671  
Iteration 3:   log likelihood =  -1898.816  
Iteration 4:   log likelihood = -1898.7924  
Iteration 5:   log likelihood = -1898.7924  

Logistic regression                             Number of obs     =     10,001
                                                LR chi2(3)        =    1565.36
                                                Prob > chi2       =     0.0000
Log likelihood = -1898.7924                     Pseudo R2         =     0.2919

────────────────────┬────────────────────────────────────────────────────────────────
                 u6 │      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
────────────────────┼────────────────────────────────────────────────────────────────
            1.focal │   .1617065   .1512602     1.07   0.285    -.1347579     .458171
        f_est_bayes │   1.839442    .084289    21.82   0.000     1.674239    2.004646
                    │
focal#c.f_est_bayes │
                 1  │  -.0372411   .1160421    -0.32   0.748    -.2646795    .1901974
                    │
              _cons │  -3.741616   .1107006   -33.80   0.000    -3.958585   -3.524647
────────────────────┴────────────────────────────────────────────────────────────────

Iteration 0:   log likelihood = -2673.9607  
Iteration 1:   log likelihood = -2072.4919  
Iteration 2:   log likelihood = -1814.1819  
Iteration 3:   log likelihood = -1804.1159  
Iteration 4:   log likelihood = -1804.0777  
Iteration 5:   log likelihood = -1804.0777  

Logistic regression                             Number of obs     =     10,001
                                                LR chi2(3)        =    1739.77
                                                Prob > chi2       =     0.0000
Log likelihood = -1804.0777                     Pseudo R2         =     0.3253

────────────────────┬────────────────────────────────────────────────────────────────
                 u7 │      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
────────────────────┼────────────────────────────────────────────────────────────────
            1.focal │   .0018105   .1640085     0.01   0.991    -.3196402    .3232611
        f_est_bayes │   1.945328   .0877178    22.18   0.000     1.773404    2.117252
                    │
focal#c.f_est_bayes │
                 1  │   .0875813    .124389     0.70   0.481    -.1562168    .3313793
                    │
              _cons │  -3.850159   .1160671   -33.17   0.000    -4.077646   -3.622671
────────────────────┴────────────────────────────────────────────────────────────────

Iteration 0:   log likelihood = -2615.9245  
Iteration 1:   log likelihood =  -2052.747  
Iteration 2:   log likelihood = -1816.2245  
Iteration 3:   log likelihood = -1808.0281  
Iteration 4:   log likelihood = -1807.9863  
Iteration 5:   log likelihood = -1807.9863  

Logistic regression                             Number of obs     =     10,001
                                                LR chi2(3)        =    1615.88
                                                Prob > chi2       =     0.0000
Log likelihood = -1807.9863                     Pseudo R2         =     0.3089

────────────────────┬────────────────────────────────────────────────────────────────
                 u8 │      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
────────────────────┼────────────────────────────────────────────────────────────────
            1.focal │   .2425535   .1613619     1.50   0.133    -.0737101    .5588171
        f_est_bayes │   1.991921   .0899627    22.14   0.000     1.815597    2.168245
                    │
focal#c.f_est_bayes │
                 1  │  -.1603309   .1218368    -1.32   0.188    -.3991266    .0784648
                    │
              _cons │   -3.93049   .1200288   -32.75   0.000    -4.165743   -3.695238
────────────────────┴────────────────────────────────────────────────────────────────

Iteration 0:   log likelihood = -2728.7632  
Iteration 1:   log likelihood = -2092.9326  
Iteration 2:   log likelihood = -1820.0639  
Iteration 3:   log likelihood = -1808.4247  
Iteration 4:   log likelihood = -1808.3851  
Iteration 5:   log likelihood = -1808.3851  

Logistic regression                             Number of obs     =     10,001
                                                LR chi2(3)        =    1840.76
                                                Prob > chi2       =     0.0000
Log likelihood = -1808.3851                     Pseudo R2         =     0.3373

────────────────────┬────────────────────────────────────────────────────────────────
                 u9 │      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
────────────────────┼────────────────────────────────────────────────────────────────
            1.focal │   .1863548   .1663344     1.12   0.263    -.1396547    .5123643
        f_est_bayes │   2.084298   .0919163    22.68   0.000     1.904146    2.264451
                    │
focal#c.f_est_bayes │
                 1  │  -.0653359   .1264097    -0.52   0.605    -.3130944    .1824226
                    │
              _cons │  -3.970444   .1221161   -32.51   0.000    -4.209787     -3.7311
────────────────────┴────────────────────────────────────────────────────────────────

Iteration 0:   log likelihood = -2802.4074  
Iteration 1:   log likelihood = -2177.9652  
Iteration 2:   log likelihood = -1937.4252  
Iteration 3:   log likelihood = -1929.4049  
Iteration 4:   log likelihood = -1929.3664  
Iteration 5:   log likelihood = -1929.3664  

Logistic regression                             Number of obs     =     10,001
                                                LR chi2(3)        =    1746.08
                                                Prob > chi2       =     0.0000
Log likelihood = -1929.3664                     Pseudo R2         =     0.3115

────────────────────┬────────────────────────────────────────────────────────────────
                u10 │      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
────────────────────┼────────────────────────────────────────────────────────────────
            1.focal │  -.0948999   .1522199    -0.62   0.533    -.3932455    .2034456
        f_est_bayes │   1.850282   .0819606    22.58   0.000     1.689642    2.010921
                    │
focal#c.f_est_bayes │
                 1  │   .1275024   .1180057     1.08   0.280    -.1037844    .3587893
                    │
              _cons │  -3.622359    .105405   -34.37   0.000    -3.828949   -3.415769
────────────────────┴────────────────────────────────────────────────────────────────

The answer

The answer is yes, the excess type-I error problem goes away with Bayes factor score estimates.

It is unknown if there is any power to detect DIF if it really existed with the Bayes factor score estimate approach, so this is only half the important answer.

fin